

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Keeping Customers Competitive & Productive with Energy Efficiency & Power Quality Solutions

Mark Stephens, PE, CEM Senior Project Manager Industrial PQ and Energy Efficiency Electric Power Research Institute Phone 865.218.8022 <u>mstephens@epri.com</u> Alden Wright, PE, CEM Senior Project Engineer/Scientist Industrial PQ and Energy Efficiency Electric Power Research Institute Phone 865.218.8094 awright@epri.com

Harish Sharma Senior Project Engineer/Scientist System Studies Group Electric Power Research Institute Phone 865.218.8039 <u>hsharma@epri.com</u>

Our Industrial Audit Core Team

Mark Stephens, PE, CEM Senior Project Manager

Scott Bunton, CEM Technologist

Other Supporting Staff: Doug Dorr Tom Cooke Harish Sharma Randy Horton Ron Domitrovic Baskar Vairamohan

Bill Howe, PE, CEM P1 Program Manager ICoE Manager

Alden Wright, PE, CEM Senior Project Engineer

James Owens Project Engineer

Industrial Power Quality

Base Research: PQ Compatibility (PS1C)

PQ Standards

PQ Device Sensitivity, PQ Contribution, & Mitigation

PQ Investigation Tools

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Base Research: PQ Knowledge (PS1D) PQ Resources

MyPQ website

Supplemental Research Site Investigations

RESD Testing

Training

Events

EPRI PQ Week 2010: Power Quality Interest Group Meeting (PQIG), Advanced Power Quality Training, and Flicker Interest Group Meeting Pogens: Power Quality (#1) Newshort 51-50 (2010)

EPRI Invites you to join us this November at EPRI Knoxville for a full week of Power Quality events. This y we are combining our yearly Power Quality interest Gr (POIG) in the same week as our advanced power qual classes. The Flicker Interest Group meeting will be held

devices—to characterize their ability to save energy ar ar survive typical PQ events. In this class, we will discuss p RESD project, and you will witness live demos of some the technologies in EPRI's lab.

A Fresh Look at Voltage Sag Standards. A lot has hannened in the last three years related to voltage-sag

EPRI's Industrial Energy Efficiency and Power Quality Work

- Headed up primarily from Knoxville, we specialize in solving EE & PQ Problems In all Manufacturing Sectors
- Our Primary mission is to Focus on Reducing End Use Customer Losses by improving process energy efficiency and PQ through:
 - Testing (lab and field)
 - EE & PQ Audits
 - Consulting with OEMs
 - Training
 - Portable Test Hardware

EPRI Industrial Site Investigations1996-2008

Industry	Sites	Percentage
Semiconductor	27	21%
Plastics	13	10%
Machining	12	9%
Food Processing	11	9%
Automotive	10	8%
Aviation	9	7%
Paper/Printing	9	7%
Petrochemical	6	5%
Commercial	5	4%
General Mfr	5	4%
Glass	5	4%
Chemical	4	3%
Heavy Inudustry	4	3%
Electronic Assembly	3	2%
Textile	3	2%
Pharmaceutical	2	2%
Total Voltage Sag PQ Investigations 1996-2008	128	
Average Per Year	10	

Semiconductor	Plastics	Machining	Food Processing
Automotive	Aviation	Paper/Printing	Petrochemical
Commercial	General Mfr	□ Glass	Chemical
Heavy Inudustry	Electronic Assembly	Textile	Pharmaceutical

Presentation Outline

• 9 AM - Power Quality:

- The Electrical Environment: Common Levels of Power Quality
- Voltage Sags and Solutions (use the PQ Investigator)
- Power Factor Correction
- Harmonics Concerns and Solutions
- Case Studies
- Break 2:50 (15 Minutes)
- 10:30 PM Energy Efficiency:
 - Reduction of Thermal Losses/Waste Heat Recovery
 - Upgrading of Lighting Technology and Controls
 - Use of Premium Efficiency Motors
 - Efficient Application of Adjustable Speed Drives
 - Compressed Air Best Practices
 - Chilled Water Systems
 - Advanced Technologies
 - Case Studies
 - ISO 50001/Superior Energy Performance
 - FYI Use of DOE Industrial Technologies Program (ITP) Tools
- 12:00 PM Conclusion

EPEI ELECTRIC POWER RESEARCH INSTITUTE

PQ Session

- The Electrical Environment: Common Levels of Power Quality
- Voltage Sags and Solutions (use the PQ Investigator)
- Power Factor Correction
- Harmonics Concerns and Solutions
- Case Studies

EPEI ELECTRIC POWER RESEARCH INSTITUTE

The Electrical Environment: Common Levels of Power Quality

IEEE-1159

	Categories		Typical Duration	Typical Spectral Content	Typical Voltage Magnitude	Method of Characterizing	Typical Causes	Example of Power Conditioning Solutions
Transients		Nanosecond	> 50 nanoseconds	5 ns rise		Peak	Lightning, Electro-Static	Surge
		Microsecond	50 nanoseconds to I millisecond	l μ rise		Magnitude, Rise Time,	Discharge, Load Switching,	Filters,
	Impulsive	Millisecond	> 1 millisecond	0.1 ms rise		Duration	Capacitor Switching	Transformers
		Low Frequency	0.3 milliseconds to 50 milliseconds	< 5 kHz	0 to 4 pu	Waveforms	Line/Cable	Surge
		Medium Frequency	20 microseconds	5 to 500 kHz	0 to 8 pu	Peak Magnitude Frequency Components	Switching, Capacitor Switching,	Arresters, Filters, Isolation
	Oscillatory	High Frequency	5 microseconds	0.5 to 5 MHz	0 to 4 pu	componenta	Load Switching	Iransformers
Short Duration Variations	Instantaneous 0.5 cycles to 30 cycles	Sag			0.1 to 0.9 pu	RMS vs. Time, Magnitude,	Remote System	Ferroresonant Transformers, Energy
	Momentary 30 cycles to 3 seconds	Swell			1.1 to 1.8 pu	Duration	Faults	Storage Technologies, UPS
	Temporary 3 seconds to 1 minute	Interruption			< 0.1 pu	Duration	System Protection (Breakers, Fuses), Maintenance	Energy Storage Technologies, UPS, Backup Generators
Long Duration Undervoltages Variations		> 1 minute		.08 to 0.9 pu	RMS vs. Time,	Motor Starting,	Voltage Regulators,	
Overvoltages				I.I to I.2 pu	Statistics	Load Dropping	Ferroresonant Transformers	
Voltage Unba	ılance		steady state		0.5 to 2%			
Waveform	DC C	Offset	steady state		0 to 0.1%			
Distortion	Harm	onics	steady state	0 to 100th H	0 to 20%	Harmonic Spectrum, Total Harm.	Nonlinear Loads, System	Filters (active or passive), Transformers (cancellation or
Interharmonics		steady state	0 to 6 kHz	0 to 2%	Distortion, Statistics	Resonance	zero sequence components)	
Notching		steady state						
Noise		steady state	broad- band	0 to 1%				
Voltage Fluct	uations		Intermittent	< 25 Hz	0.1 to 7%			
Power Freque	ency Variations		> 10 seconds			Variation Magnitude Frequency of Occurrence, Mod. Frequency	Intermittent Loads, Motor Starting, Arc Furnaces	Static Var Systems

Why is PQ Important?

•What happens to a manufacturing process when a power quality problem occurs?

•Who is to blame?

•How do we work together to fix the problems?

Typical Reported Per Event Cost of PQ Disturbance

		Reported		
No.	Process	Cost	Service Voltage	Load
1	Semiconductor	\$1,500,000	69 kV	25 MW
2	Semiconductor	\$1,400,000	161 kV	30 MW
3	Semiconductor	\$ 700,000	12.5 kV	10 MW
4	Metal Casting	\$ 200,000	13.8 kV	16 MW
5	Chemical Plant	\$ 160,000	12.5 kV	5 MW
6	Pulp and Paper Mill	\$ 110,000	161kV	100 MW
7	Aerospace Engine Machining	\$ 100,000	13.8kV	10 MW
8	Food and Beverage	\$ 87,000	12.5 kV	5 MW
9	Chemical Plant	\$ 75,000	66kV	3 MW
10	Chemical Plant	\$ 75,000	66kV	5 MW
11	Electronic Components	\$ 75,000	12.5 kV	5 MW
12	Crystal Growth	\$ 60,000	12.5 kV	1 MW
13	Chemical Plant	\$ 46,175	66kV	30 MW
14	Wiring Manufacturing	\$ 34,000	12.5 kV	2 MW
15	Chemical Plant	\$ 18,000	12.5 kV	2 MW
16	Fibers Plant	\$ 15,000	12.5 kV	1 MW
17	Paper and Packaging	\$ 10,000	12.5 kV	4 MW
18	Plastic Bag Manufacturing	\$ 10,000	480V	4 MW
19	Plastics	\$ 7,500	12.5 kV	4 MW
20	Stainless Steel Manufacturing	\$ 5,500	12.5 kV	2 MW

Automotive Reported as high as \$700,000.

Reliability/Power Quality Myth 1

- Those annoying Sags, "brown-outs" and interruptions are due to insufficient utility capacity
 - especially when it occurs during peak summer periods
 - perception strong in mature or rapidly developing service areas
 - -mis-information can add confusion

Reliability/Power Quality Reality 1

- Those annoying Sags and interruptions are most likely due to distribution faults and short circuits
 - interruptions (0 to 10% of nominal volts)
 - momentary in duration (up to 5 minutes duration)
 - sustained or extended duration (> than 5 min.)
 - voltage sags (10-90% of nominal volts)
 - resulting from fault clearing on parallel or "sister" circuits

Outage or Sag ?

EPRH

EPRI Power Quality and Energy Efficiency Presentation

FIGURE 7.1 Tom Short, Electric Power Distribution Handbook, CRC Press, 2004

Florida

Targeting by Cause

Northwest US

By Occurrence By Hours Out

- Equipment Failure (29%) Tree Contacts (27%) 1
- Foreign Interference (16%) Weather (21%) 2
 - Tree Contacts (13%) Equipment Failure (18%) 3
 - Foreign Interference (14%) Unknown (9%) 4

Weather (9%) 5 Unknown (6%)

EPRI Fault Study

Lightning

Animal

Wind

Tree contact

Equipment failure

Effects of Voltage Sags

- Lights may or may not flicker
- Equipment shutdown or malfunction
- Can result in production downtime an/or product loss

For every 1 momentary interruption a customer will see 8 voltage sags (EPRI DPQ Study)

Voltage Sags - How Many Phases "sag"?

Source: EPRI Distribution Power Quality Study

Why Voltage Sags Occur...

 Line-to-Ground/Line-to-Line Faults Occur on the Utility System due to: - Weather - Trees - Public Interference Internally induced facility events (starting of large high inrush load) Although the utility can reduce the number of events (tree trimming, root cause analysis), it is impossible to eliminate all voltage Sags.

Rural Site 5 Minute Aggregation, 14 Months of Data

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Rural Site Summary of Events

Interruptions	Count
Scheduled outages	2
Station Breaker outage, Bird contact pole fire near Site	1
Station Breaker operated, Weather lightning, tree contact	1

Voltage Sags	Count
Major Storm	6
Weather Lightning Storm	6
No Trouble Tickets/operations	26
Blown transformer fuse due to squirrel	10
TIR outage beyond protective Device	10
TOR outage beyond protective Device	15
Failed equipment	5
Blown fuse at Adjacent Industrial	2
Adjacent Industrial Substation Fire	1
Vehicle accident	1

Note:

TOR - Tree Outside of Right-Of-Way

TIR - Tree Inside Right-Of-Way

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Is it the Plant Equipment's Fault?

Goal – Extending the Operating Envelope

"Extending the operating envelope" of equipment means that we have to reduce the area of equipment malfunctions by enabling the equipment to ride through deeper and longer voltage sags.

Important Realization

- Utilities Share Responsibility
 - Tree Trimming, Lightning Arrestors, Grounding,
 Maintenance, Provide PQ information to industrials, etc
- Industrial sites Share Responsibility
 - Understanding Equipment Vulnerability, PQ Specifications, Power Conditioning, Proper Wiring/Grounding, etc
- Most effective solutions are reached when both sides work together to see what can be done

Voltage Sags and Solutions

Common Weak Links – AC Powered Relays, Contactors, Motor Starters, PLCs

Figure I. A rack-mounted PLC power supply that requires AC voltage (120/208-240 volts)

Figure 5. Composite Low-Voltage Tolerance of Relays

AC Circuits that can be Sensitive

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Another Example Weak Link - Drive Interfacing Circuits

- AB Power Flex 700
- Drive is compliant to SEMI F47
- Utilizes Run Relay and Stop Interposing Relays ("ice cubes").
- Powered from 500VA CPT in cabinet, circuit goes to field start and stop pushbuttons and back to relays in drive cabinet

Example Panel Analysis

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

PQ Investigator Tool

- EPRI has developed a new tool called PQ Investigator
- This tool allows for look up of hundreds of device ride-through curves
- Utilities may have access to the s/w and can help

Specify Voltage Sag Standards in Purchase Specs

- Example Specs
 - SEMI F47
 - From Semiconductor Industry
 - Most control OEMs have compliant hardware
 - -IEC 61000-4-11/34
 - Class 3
 - -IEEE P1668
 - (Balloting Soon)

Draft IEEE P1668 Excerpt

- 1,2, & 3 phase voltage sag requirements
- Comprehensive document:
 - Primer on Voltage Sags
 - Recommended test requirements
 - Test Procedures & Guidelines
 - Test Equipment Requirements
 - Certification and Test Report Requirements

Design with DC Power

- One of the best methods of increasing the tolerance of control circuits is to use direct current (DC) instead of alternating current (AC) to power control circuits, controllers, input/output devices (I/O), and sensors.
- DC power supplies have a "built-in" tolerance to voltage sags due to their ripple-correction capacitors, whereas control power transformers (CPTs) and AC components do not have inherent energy storage to help them ride through voltage sags
- Many OEMs are moving in this direction to harden their equipment designs

DC Powered Emergency Off Circuit

DC Powered PLC System in Weld Shop

EPRI Power Quality and Energy Efficiency Presentation

ELECTRIC POWER RESEARCH INSTITUTE

Utilize Sag Tolerant Components

- IF AC Relays and Contactors are used in the semiconductor tool design, then utilize compliant devices.
- Consider response at both 50 and 60 Hz.
- Many components have been certified to SEMI F47.

Examine Configuration Settings

- In most cases, drive manufacturers give users access to basic microprocessor program parameters so that the drive can be configured to work in the user's particular application.
- A drive's programming parameters associated with reducing the effect of voltage sags are seldom describes in one section of the user manual.

Parameter	ter Parameter Description				
Automatic Reset	This parameter allows the drive to automatically reset some fault conditions, such as DC link undervoltage or overvoltage, without the need for operator/user intervention. This feature is used in conjunction with Automatic Restart.				
Automatic Restart Parameter	This parameter defines the method in which the drive automatically restarts after a fault condition is over. Automatic Restart operations may only be used as outlined in NFPA 79. Equipment damage and/or personal injury may result if the Automatic Restart parameter is used in an inappropriate application. Parameter Description				
Kinatia Duffariar	When the drive concers a DC link law valtage condition the drive ways				
Kinetic Buttering	When the drive senses a DC link low-voltage condition, the drive uses the combined motor-load inertial energy to maintain a factory- programmed DC link voltage inside the drive by applying a braking force to the motor. This feature does not create a potential for extreme current or torque transients.				
Motor Voltage Compensation	When the drive senses a DC link low-voltage condition, the drive's controller changes the inverter firing timing sequences to compensate for a reduced DC link voltage. The objective is to maintain as close as possible the desired output voltage for operating the motor and load.				
Controlled Deceleration and Acceleration	When the drive senses a DC link undervoltage condition, the drive begins to decelerate the motor at a user-defined rate. When the undervoltage condition ends, the drive reaccelerates the motor back to the desired operating point. This feature is often used in processes with multiple drives operating in succession, where all drives are expected to operate in unison to maintain process quality. This feature works well for common DC bus drive systems.				
Flving Restart	This parameter is similar to the parameter above with one major				
	exception: Rather than restarting at a pre-defined frequency setting, the drive uses a search algorithm to determine the motor speed. Once the speed is recognized, the drive reaccelerates the motor to the desired operating point. The odds of the motor and load experiencing extreme current and forcue transients are greatly reduced.				

Other Considerations

- Make sure the device rated voltage matches the nominal voltage. Mismatches can lead to higher voltage sag sensitivities (for example 208Vac fed to 230Vac rated component).
- Consider Subsystem performance. Vendor subsystems must be robust for the entire system to be robust. Otherwise, power conditioning may be required for the subsystem.
- Consolidate Control Power Sources. This will make the implementation of any required power conditioner scheme much simpler and cost effective.
- Use a targeted voltage conditioning approach as the last resort. Apply Batteryless power conditioner devices where possible.

Example PQ Solution Levels

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

ELECTRIC POWER RESEARCH INSTITUTE

Uninterruptible Power Supply (UPS)

For Control Loads Small 500Va to 3kVA UPS Systems are sometimes Used

Battery Based UPS Are Often "Overkill"

"Abandoned in Place" UPS Systems: A Common Problem

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Comparison of Power Conditioning Devices							
Application	Device	Coverage (Vnom) / Duration			Natao		
	Device	1 φ	φ - φ	3 φ	Notes		
Зф	ProDySC	0% / 2 sec.	30% / 2 sec.	50% / 2 sec.	at full load		
Зф	AVC (two rated models)	45% / 30 sec.	45% / 30 sec.	50% / 30 sec.	at full load		
		25% / 30 sec.	25% / 30 sec.	50% / 30 sec.			
1¢ Contrl Ckt	PowerRide RTD	0% / 2+ sec.	0% A-B, B-C; 70- 80% C-A / 2+ sec.	70-80% / 2+ sec.	3-phase Input, 1-phase Output		
1¢ Contrl Ckt	MiniDySC	0% / 0.05 sec. 50% / 2 sec.	n/a	n/a			
1¢ Contrl Ckt	CVT	40-50% / 2+ sec.	n/a	n/a	And		
1¢ Contrl Ckt	VDC (6T Model)	37% / 2+ sec.	n/a	n/a			
1¢ Contrl Ckt	Coil Hold-in (CoilLock and KnowTrip)	25% / 2+ sec.	n/a	n/a	for relays, contactors, motor starters		

Generalized Example: Control Level to Equipment Level Cost vs. Coverage

Example Cost per Option

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Example Control Level Solution Application

- The CVT is protecting only the AC control components means that the selected power conditioner will be more affordable than one that could protect the entire machine.
- The ride-though of the AC drives in this example can be enhanced by modifying their programming, thus eliminating the need for a large power conditioner.

New Solution for an Old Problem: EPRI Nice Cube Block Concept & Prototype

Original "AC Ice Cube" Drop out ~70% Vnom

Remove "AC Ice Cube" Insert "Nice Cube" Puck Into Base Insert "DC Ice Cube" Drop Out ~ 25-30% Vnom

EPRI / PQSI Design Concepts for Nice Cube "Puck"/ "Brick"

- Left concept:
 - Designated "Nice Cube #1" (Vertical)
 - Square "lego block" plugs into existing base
 - Keyed to plug in only one way
 - Off the shelf "lego like" enclosure for electronics

• Middle concept:

- Designated "Nice Cube #2" (horizontal)
- Block is offset to not add height to relay
 - Important where vertical space could be limited
- Off the shelf "lego like" enclosure for electronics

• Right concept:

- Nixed based on production cost
- Puck is made from PVC and mounts on top.
- Keyed to plug in only one way
- Relay sticks up higher

110Vdc or 24Vdc relays

Nice Cube Concepts

Solution Application Points

- Voltage Sags may be mitigated at a variety of locations
- Service Entrance, Panel Feeder, Panel, Machine, and Control Levels.

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Example Problem – Multiple Cabinets Fed from Centralized Control Power Panels

- AB PLC 5
 - 78% Vnom
 - Remote rack 72%
 Vnom
- Idec RY4S ac "Ice Cube" relays
 - ~70% Vnom

RR3B

Example Solution: Distribution Panel Level Mitigation

- Remove abandoned UPS and use UPS bypass switch already in place
- Four distribution panels in room for Extruder lines plus one additional for other related control loads (5 total)

ELECTRIC POWER RESEARCH INSTITUTE

Another Distribution Panel Example

- Sometimes the most effective solution is to provide conditioned power for the entire IPP Panel. Advantages of this approach include:
 - Simplified Cut Over/Fewer Touch Points
 - Single Power Conditioner for many loads
 - When sized to support kVA of transformer, this approach will support future expansion in panels

Example Control Level Option (Area Wide Power Distribution for CPT Primaries)

- Fewer, larger sag mitigation devices
 - Fewer touch points but more expensive mitigation devices
 - New 480Vac Panel, new conduit and wiring to machine controls
 - Labor costs

Feeder Level Mitigation Scenarios

- Multiple very large sag mitigation devices
 - Fewer installation points, less wiring, conduit, & labor
 - Higher Equipment Costs
 - More Comprehensive Coverage
 - Some Typical Voltage Sag Solutions
 - Omniverter AVC
 - Softswitching DySC

Conclusions

- It's a team effort to solve these problems, the utility, industrial/commercial, and sometimes consultants need to come together.
- Understanding why your equipment is vulnerable is paramount. You can't fix a problem without understanding the true cause.
- Moving forward (sometimes with some simple modifications) you can make industrial systems more robust. Don't forget including PQ standards in your purchase specs.
- Don't assume battery based systems are required.
 Smaller solutions may be more cost effective.

Case Study: Power Quality Investigation of a Manufacturing Plant

Introduction (1)

- Voltage sags and momentary outages caused equipment and process downtime events in the second half of 2005
- Power quality audit evaluated the most sensitive equipment in the plant to formulate the best approaches for hardening the equipment to these power quality events
 - inspected drawings, did on-site testing, physically examined the plant equipment and specifications, analyzed plant power quality data.
- Identified five critical product lines Process Lines 1 thru 5.
 All five were very susceptible to voltage sags.
- Several other areas were vulnerable to voltage sags
 - Boiler systems, air compressors, conveyor controls, and computer control areas.

Introduction (2)

- Prime examples: process lines 1 to 3
- Line 2: Allen Bradley programmable logic controller (PLC) fed by a small, local uninterruptible power supply (UPS).
 - Conrols: several National Electrical Manufacturers Association (NEMA) style starters and six TB Wood's E-trAC drives.
- One sub panel (powered by a generator) controls four small 120-Vac motors that pull the product out of the oven if the power is lost.
 - Controls require the PLC to remain on-line (via UPS).
 - The PLC operates the small motor starters using generator power through the output card to turn on the motor starters.

Process Line 2 Controls

PLC remote I/O racks, burner controls, numerous AC "ice cube" relays

Drive racks

Process Line 4 and 5

 Process Line 4 and 5 each use a 5-kVA constant voltage transformers (CVT) to provide conditioned power to only a few of the control cabinets.

EPRI Power Quality and Energy Efficiency Presentation

ELECTRIC POWER RESEARCH INSTITUTE

Power System Overview

- Plant is supplied from a 12-kV industrial feeder.
 - Derived from a 69-kV substation
- Plant is located approximately 0.5 miles from substation.
- Three single-phase reclosers were added on a lateral upstream circuit in July 2005,
 - should increase the power quality as seen by the manufacturer.

PQ Data and Analysis (1)

- Utility reported events during the time frame from June 25, 2005, through December 2, 2005 (shown on next slide)
- Facility equipment compliant with the SEMI F47 power quality standard would have survived **11** of 20 events
- Equipment able to survive voltage sags to 30 percent of nominal for 1 second would ride through **19** of 20 events
 - Squirrel fault (December 1, 2005, 200-cycle Interruption)

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

PQ Data and Analysis (2)

EPRI Power Quality and Energy Efficiency Presentation

PCI ELECTRIC POWER RESEARCH INSTITUTE

© 2012 Electric Power Research Institute, Inc. All rights reserved.

PQ Data and Analysis (3)

- Based on the equipment used in Process Lines 2 and 3 and the results from previous EPRI tests, an expected ride-through curve may be created
 - Process Lines 2 and 3 would be expected to survive only 5 of the 22 recorded events based on its configuration.
 - This worst-case estimate assumes that voltage sags always occur on the most vulnerable phase.

PQ Data and Analysis (4)

- An I-Grid power quality monitor was installed by the manufacturer on 12/14/2005.
 - Connected to a 480-Vac bus in the generator room.

I-Grid Installation at the Plant

Analysis of Plant Susceptibilities (3)

- Final tests used a 1.5-kVA MiniDySC (Dynamic Sag Corrector) power conditioner on the control loads.
 - Cabinet controls survived a 30-cycle interruption before shutting down.

Summary of Plant Analysis

- The audit revealed that several pieces of equipment had control power sourced from control power transformers (CPTs) or through ice-cube relays—both very susceptible to voltage sags.
- Analysis showed that a UPS solution may be ineffective as a bad and/or slow UPS could result in line trips.
 - Testing demonstrated that a voltage ride-through solution or an active sag corrector may more effective

Recommendations

- Some recommendations based on the results of the analysis:
 - Power Conditioners
 - Consolidation of Loads
 - Adjusting Control Parameters

Power Conditioners (1)

- The product lines are spread out—control racks in various locations
- One larger power conditioner would be ideal; however, several separate power conditioners may be required
- One recommendation is to use the PowerRide ride-through device (RTD) at appropriate locations
 - Process Line 4 would need three RTDs
 - One 2.5 kVA unit wound for both 120-Vac and 480-Vac loads
 - 480-Vac output section for existing CPTs (estimated not to exceed 2.5 kVA)
 - 120-Vac output for 120-Vac loads (estimated not to exceed 2.5 kVA)
 - Other two units (2kVA each) installed in or near the cabinets

Power Conditioners (2)

PowerRide RTD Recommendation

Power Conditioners (3)

- The PowerRide RTD -- a three-phase input, single-phase output CVT.
 - Allows the controls to survive single-phase voltage sags and momentary interruptions.
 - For momentary interruptions on phases A-B and B-C, the output remains at 100% as long as Phase A-C remains at 66% or more
 - For voltage sags on phase A-C, one expects a typical CVT response with the voltage dropping off at about 50% of nominal or less.

Power Conditioners (4)

 Given the response of the RTD, only the one momentary interruption event may have affected the process with this unit installed on the controls.

*One 200-cycle interruption not shown

Power Conditioners (5)

- Another option: use multiple DySC products
- Units in the plant may be lightly loaded with voltage sag ridethrough performace closer to the half-loaded line.
- All but the one momentary interruption would be protected.
- With power-conditioning equipment, the UPS may be removed.

Consolidation of Loads

- Several widely-dispersed loads may be combined on one panel several panels are only lightly loaded.
- Consolidation would allow more effective use of powerconditioning equipment (M).

Adjusting Control Parameters

- Adjustable-speed drives may be set up for the best voltage sag ride-through performance possible.
 - Voltage trip points may be adjusted
 - Built-in voltage sag ride-through features may be enabled.
 - Chokes may be necessary to prevent damage!

Magnatek GPD 305

- When a fault occurs during operation, the GPD drive can be programmed for auto-restart using parameter n47.
- The setting of this parameter either enables or disables the ride-thru feature of the GPD 305. The three settings are:
 - 0 = Disabled (Factory setting)
 - 1 = Enabled with a 2 sec ride-thru
 - 2 = Enabled with indefinite ride-thru, provided the control power is maintained.
- When set to "0" there will be no ride-thru available
- If enabled, the 305 will continue to operate during a momentary power loss of up to 80%, but if the loss exceeds the identified time period, the 305 will stop.

106 Copyright © 2008 Ele

Implementation Results

- The plant estimated yearly losses due to PQ-related downtime in the \$300,000 range
- EPRI's recommendations implemented in early June of 2006
- Site experienced a total of 103 events as reported by the I-Grid system.
 - 6 were outages (mostly weather related)
 - The remaining 97 recordings were aggregated into a subset of 40 actual events.
 - 18 to 19 would have shut the plant equipment down based on the previous history and the expected vulnerability of the unprotected equipment.
- None of the voltage sag events were found to affect production after the installation of the solutions.

PF Correction – Harmonic concerns/Solutions

Breaking Down AC Power..... The Power Triangle

True versus Displacement Power Factor

• True power factor, or TPF, is the ratio between kW and kVA, including all the harmonics.

-PF = P/S = kW/kVA

• Displacement power factor, DPF, is the cosine of the angle between the voltage and current. This is for the fundamental (60 Hertz) component only.

 $- PF = Cos (\Phi)$

 When no harmonics are present, True Power Factor = Displacement Power Factor

Capacitors Correct Displacement Power Factor

EPRI Power Quality and Energy Efficiency Presentation

PF and Beer – An imperfect but useful analogy.

- kW The thirst quenching, good part. Does the work.
- kVAR Foam. Does not quench the thirst.
- kVA Total contents of the mug.
 - PF=kW/(kW+kVA)
 - PF=Beer/(Beer+Foam)
- For a given KVA: The more foam (the higher the percentage of KVAR), the lower the ratio of KW (beer) to KVA (beer plus foam). Thus, the lower the power factor.
- The less foam (the lower the percentage of KVAR), the higher the ratio of KW (beer) to KVA (beer plus foam). In fact, as foam (or KVAR) approaches zero, your power factor approaches 1.0.

Overall Impact of Energy Savings as Percentage of Plant Total Energy Consumption

Impact of Power Factor Correction Capacitor on Total Facility Load

Harmonic Sources

- Harmonic distortion comes from nonlinear devices, principally loads
- Harmonic Sources
 - Ferromagnetic devices such as: transformers and motors
 - Arcing devices such as: arc furnaces, fluorescent lighting
 - Power electronics
- Excess harmonics can cause several problems
 - Overheating
 - Equipment failure
 - Increased losses
 - Mis-operations

79

How Do Non-Linear Loads Generate Harmonics?

- A non-linear load is one in which the current is not proportional to the input current.
 - Non-linear \rightarrow V vs. I is not a straight line

From Dugan, *Electrical Power Systems Quality* EPRI Power Quality and Energy Efficiency Presentation

Harmonic Current Flow

- Most harmonic producing devices are loads, e.g. a 6-pulse motor drive.
- Although these devices are loads, they "inject" harmonic current back into the system, and are therefore modeled as harmonic current "sources".

EPRI Power Quality and Energy Efficiency Presentation

Parallel Resonance

EPRI Power Quality and Energy Efficiency Presentation © 2012 Electric Power Research Institute, Inc. All rights reserved.

Series Resonance

Devices for Controlling Harmonic Distortion

- Chokes for ASD applications
- Zig-zag transformers
- Passive Filters
- Active filters

84

Shunt Passive Filter Configurations

Shunt Passive Filter Frequency Response

Filter+System Response ($f_0 = 294$ Hz)

Effect of Notch Filter on the Frequency Response Characteristics

- Whenever a single capacitor bank is added to a system, a single resonant point is created.
- Whenever a single tuned harmonic filter bank is added to a system, <u>two</u> resonant points are created.
 - One low impedance point
 - One high impedance point

Effect of Notch Filter on the Frequency Response Characteristics

 Notch filters can be comprised of several different connections. The following all yield the same frequency response.

Most common for HV and MV applications

Most common for LV applications

From IEEE Std. 1531-2003

EPRI Power Quality and Energy Efficiency Presentation

Effect of Notch Filter on the Frequency Response Characteristics

Harmonic Filter Design

- Step 1 Select the desired notch frequency
 - Select the lowest characteristic harmonic, and
 - Tune slightly less than desired harmonic
- Step 2 Determine necessary reactive compensation (i.e. capacitor bank size) and voltage rating
- Step 3 Based on filter tuning, determine filter reactor ratings.
- Step 4 Evaluate filter duty requirements (IEEE Std. 18 IEEE Standard for Shunt Power capacitors)

Capacitors are intended to be operated at or below their rated voltage. Capacitors shall be capable of continuous operation under contingency system and bank conditions provided that none of the following limitations are exceeded:

- a) 110% of rated rms voltage
- b) 120% of rated peak voltage, i.e. peak voltage not exceeding 1.2 x (square root of two) x rated rms voltage, including harmonics, but excluding transients
- c) 135% of nominal rms current based on rated kvar and rated voltage
- d) 135% of rated kvar

EPRI Power Quality and Energy Efficiency Presentation

 Design a harmonic filter to improve the overall power factor to 0.95 lagging, and reduce the harmonic current emission at the PCC to the recommended limits in IEEE Std. 519.

Using Excel spreadsheet that is provided

EPRI Power Quality and Energy Efficiency Presentation

Spreadsheet Results (cont.)

EPRI Power Quality and Energy Efficiency Presentation

• Spreadsheet Results (cont.)

CAPACITOR DUTY CALCULATIONS:			
Harmonic Filter RMS Current:	747.8 Amps	Fund. Freq. Capacitor Voltage:	502.8 Volts
Harmonic Capacitor Voltage:	73.1 Volts	Maximum Peak Voltage:	575.9 Volts
RMS Capacitor Voltage:	508.1 Volts	Maximum Peak Current:	1044.6 Amps

CAPACITOR LIMITS: (IEEE Standard 18-2002)

	Limit	Contingency	Actual	Value
Peak Voltage:	100%	120%	96%	576
RMS Current:	100%	135%	104%	748
KVAr:	100%	135%	88%	658
RMS Voltage:	100%	110%	85%	508

Spreadsheet Results (cont.)

FILTER REACTOR DESIGN SPECIFICATIONS:

Reactor Impedance: Fundamental Current: RMS Current Requirement: 0.0217 Ω 604.7 Amps 747.8 Amps

Reactor Rating: Harmonic Current: Voltage Requirement: 0.0576 mH 439.8 Amps 277.1 Volts

Case Study – Plating Facility

- New facility supplied from 12 kV distribution system (2 similar services)
- Plant loads consist of a significant percentage of rectifier loads.
- Tuned capacitor banks (automatic systems) added to avoid power factor penalty and prevent harmonic resonance problems.
- 2 MVA supply transformer for each service.
- 0-650 kvar compensation for each service.
- Utility system has a number of capacitor banks on the feeder supplying the plant, as well as parallel feeders.
- Fuses blew in customer tuned banks shortly after they were energized. This situation was repeated again before leaving the filters off for investigation.

The System

The 480 V tuned filter bank

- Bank was an automatic bank with a range of 0-650 kvar
- One 50 kvar step and 6 100 kvar steps allowing 50 kvar increments.
- Each step is tuned to 4.8 times the fundamental frequency.

Rectifier Loads

EPRI Power Quality and Energy Efficiency Presentation

Initial measurement results

Measurements at the meter location to the facility (performed by utility)

- 1. PF Correction (filters) off
 - Vthd=3.7%, V5=2.5%, I=300 amps, Ithd=4.8%
 - Voltage spectrum has 3rd and 5th 2.5% each
 - Current spectrum has some third (2%) but more 5th (4%)
- 2. PF Correction (filters) on
 - Vthd=2.8%, V5=1.3%, I=260 amps, Ithd=35%
 - Voltage spectrum still has 3rd (2.5%) but 5th is reduced (1.3%)
 - Current spectrum is dominated by 5th 30%
 - kvar is reduced by about 50 kvar between the two cases indicating that only one 50 kvar tuned bank was probably in service

Some Conclusions:

- The power factor correction reduces the rms current by correcting the fundamental frequency power factor.
- However, the filters are absorbing a lot of fifth harmonic current from the power system. This fifth harmonic loading from the power system could be the cause of the fuse blowing in the filter banks.

Resonance conditions depend on the capacitors in service

EPRI Power Quality and Energy Efficiency Presentation

12 kV System Frequency Response With LV Filters in Service

Frequency Scans at 12kV Bus

EPRI Power Quality and Energy Efficiency Presentation

Solution 1 – Detune the 480 V filter Bank

Solution 2 – Modifying a cap bank to filter on primary system

50 KVAR Stage Filter Current for a 5th harmonic tuned bank at 12 kV Bus

Existing Tuning

EPRI Power Quality and Energy Efficiency Presentation

Filter configuration

- Filter design developed with system simulations (SuperHarm) and Filter Design Spreadsheet.
- Solves 5th harmonic resonance problem for all compensation levels
- Allows use of existing filters for the customer and helps other customers too
- Cost sharing

Results of Actual Filter Implementation –Impact on THD

Voltage THD Values

EPRI Power Quality and Energy Efficiency Presentation

Grid-IQ

EPRI Power Quality and Energy Efficiency Presentation

Grid-IQ Overview

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

ELECTRIC POWER

RESEARCH INSTITUTE

E
Circuit Model Database - Overview

- Library of models of distribution circuits
- Modeling platform: OpenDSS
 - Open source software developed by EPRI
 http://sourceforge.net/projects/electricdss
- Approach
 - Circuit selection
 - Sanitization
 - Validation
- Plan

	2010	Existing	2012	2013
Number of Circuit Models	15	30	40-50	70-75

EPRI Power Quality and Energy Efficiency Presentation

Circuit Model Database - Key Characteristics

Circuit Alias	Ckt1	Ckt2	Ckt3	Ckt4	Ckt5	Ckt6	Ckt7
System voltage (kV)	12.5	25.0	25/8.3	25/4.8	12.47	13.8	12.5
Sub primary Voltage (kV)	115.0	115.0	115	115.0	115.0	69.0	115.0
3-Ph SCC at Sub Sec. (MVA)	107	148	142	62	114	83	475
Number of customers	999	1102	1117	749	1379	704	5694
Percent residential by load	100	100	100	100	96	92	39
Service xfmr connected kVA	13793	19476	13086	13950	16310	16275	19320
Primary circuit miles total	48	44	72	60	48	79	8
Total feeder kvar	300	0	1800	2250	1950	600	2400
No. of feeders on the bus	6	2	2	1	1	1	14

Load Models

- KW, PF and Harmonic Spectrums
- Load Types
 - Modern Lighting
 - CFLs
 - LED lamps (2011)
 - Hybrid CFL
 - EV Chargers
 - PV Inverter
 - Computer Power Supply
 - Gaming Systems

Grid-IQ Harmonic Evaluation Module DEMO

EPEI ELECTRIC POWER RESEARCH INSTITUTE

End PQ Session –

Break

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Energy Efficiency Session

- Reduction of Thermal Losses/Waste Heat Recovery
- Upgrading of Lighting Technology and Controls
- Use of Premium Efficiency Motors
- Efficient Application of Adjustable Speed Drives
- Compressed Air Best Practices
- Chilled Water Systems
- Advanced Technologies
- ISO 50001/Superior Energy Performance
- FYI DOE ITP Tools

Manufacturing Net Electricity Consumption

Source: Energy Information Administration, 2002 Manufacturing Energy Consumption Survey

EPRI Power Quality and Energy Efficiency Presentation

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Reduction of Thermal Losses & Waste Heat Recovery

- If a facility has process exhaust
 - Waste heat may be available!
 - Boiler Stacks
 - Afterburner/Abatement
 Systems
 - Furnace/Oven Exhaust

- Benefits
 - Significant energy savings potential
 - Reduced energy costs
 - Reduced capacity/size requirements for boilers or furnaces
- Consider all waste streams to determine viability of appropriate waste stream recovery systems
 - Heat losses must first be minimized

- Common Uses
 - Preheating combustion air
 - Steam generation
 - Water heating
 - Load preheating
- Methods
 - Heat Exchanger
 - Heat Pump
 - Steam turbine (CHP)
- Processes
 - Waste heat to heat
 - Waste heat to cooling/refrigeration
 - Waste heat to power

EPRI Power Quality and Energy Efficiency Presentation

Energy Tips – Process Heating

Process Heating Tip Sheet #8 • September 2005

Suggested Actions

- Use PHAST with current and projected energy costs to estimate energy savings from waste heat recovery.
- Contact furnace or combustion system suppliers to calculate payback or return on investment.

Resources

U.S. Department of Energy— For additional information on process heating system efficiency, to obtain DOE's publications and Process Heating Assessment and Survey Tool (PHAST) software, or learn more about training, visit the BestPractices Web site at www.eere.energy.gov/industry/ bestpractices.

For most fuel-fired heating equipment, I heat in flue gas

a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transfirred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the

for Fuel-Fired Furnaces

Install Waste Heat Recovery Systems

greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas.

For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gase.

Waste Heat Recovery

Heat losses must be minimized before waste heat recovery is investigated. Figure 2 highlights opportunities for energy savings.

The most commonly used waste heat recovery methods are preheating combustion air, steam generation and water heating, and load preheating.

Preheating Combustion Air. A recuperator is the most widely used heat recovery device. It is a gas-to-gas heat exchanger placed on the stack of the furnace that preheats incoming air with exhaust gas. Designs rely on tubes or plates to transfer heat from the exhaust gas to the combustion air and keep the

streams from mixing

U.S. Department of Energy Energy Efficiency and Renewable Energy Diriging yours prosperous faure where energy is deen, alundert, reliable, and sticrable

•See www.eere.energy.gov/industry

- Three Key Elements
 - An available waste heat stream
 - A feasible recovery technology
 - A suitable application for the recovered energy

Ref: Waste Heat Recovery in Industrial Facilities: Opportunities for Combined Heat and Power and Industrial Heat Pumps. EPRI, Palo Alto, CA: 2010. 1020134.

Feasible Recovery Technology

Temperature Classification	Waste Heat Source	Use for Recovered Energy	Technologies
High (>1200 °F)	 Furnaces Steel electric arc Steel heating Basic oxygen Aluminum reverberatory Copper reverberatory Nickel refining Copper refining Glass melting Iron cupolas Coke ovens Fume incinerators Hydrogen plants 	 Combustion air preheat Process steam Power generation Furnace load preheating Medium or low temperature process needs 	 Passive heat exchangers Recuperators Regenerators Air preheaters Regenerative/recuperative burners Finned tube heat exchangers and economizers Waste heat boilers CHP – steam driven
Medium (450 – 1200 °F)	 Combustion exhaust streams Steam boiler Gas turbine IC engine Heat treating furnaces Ovens Drying Baking Curing Cement kilns 	 Combustion air preheat Process steam Power generation Furnace load preheating Feedwater preheating Low temperature process needs 	 Passive heat exchangers CHP Steam cycle Organic Rankine cycle (ORC)
Low (< 450 °F)	 Combustion products from recovery systems Gas fired boilers Ethylene furnaces Steam condensate Cooling Water Furnace doors Annealing furnaces Air compressors IC engines Refrigeration condensers Ovens Drying Baking Curing Hot process liquids or solids 	 Space heating Domestic water heating Low temperature process needs 	 Heat pump (increase temperature to useful range) ORC

EPRI Power Quality and Energy Efficiency Presentation

Typical Catalytic Oxidizer After Burner System

EPRI Power Quality and Energy Efficiency Presentation

Example Waste Heat Recovery Opportunity

Example Medium Waste Heat Availability At Plant Site

V= V x A = (19.8m/sec)(0.3295M²)=6.52m³/sec ρ@100°C= 0.946 kg/m³

m=Vp= (6.52m^3/sec)(0.946kg/m^3)=6.17kg/sec

 $\mathbf{Q} = (m)(Cpavg)(\Delta T) = (6.17 kg/sec)(1.039 kj/kgK)(399^{\circ}C-100^{\circ}C)$

Q= ~ 2MW @ ~ 750[°]F **Q**= ~ (2x10⁶) (3.413)= 6.54x10⁶ BTU/Hr

Average Anemometer Measurements ~3900ft/min

19.8m/s

Average Thermocouple Measurements

~211.6°F/ 100°C

Waste Heat from Afterburner Systems: ~6.54 MM BTU/Hr Thermal ~ 2 MW Electric

EPRI Power Quality and Energy Efficiency Presentation

Example Plant Reduction of Thermal Losses/Waste Heat Recovery Example – Plastics Extrusion

- Extruder barrels are electrically heated.... uninsulated Extrusion melt barrels are a source of waste heat
 - If building space is conditioned, waste heat adds load to the HVAC in warm months
- Custom made blankets with Velcro closures are available for easy on-off and for adjustments.
- Studies have shown up to 30% energy savings on barrel heater power usage with insulation.

Injection Molding/ Extrusion Melt Pipes

Ref: Energy Efficient Injection Molding Operation, Babu Joseph, SCE Vishu Shah, Consultek, 4/17/2003

Example ECM – Insulation of Extruder Melt Pipes

- Operating Hours
 6240/year, \$0.0734/kWh
- Conditioned Space
- 6 extruders
- 18 kW Barrel Heater Rating
- 50% Heater Diversity
- 80% Effectiveness of R5 Insulation blankets
- Payback ~ 4 months

ECM N	o	Insulate Extruder Barrels			
Cost/kWh	0.0734	Average kWh Costs			
Operating Hrs/yr	6240				
Is mfr space conditioned?	1	(0-No, 1-Yes)			
Number of extruders	6				
Barrel Heater Rating	18	kW each unit or ~average size across all units			
Machine Diversity	100%	Percentage of time machine is on			
Heater Diversity	50%	Percentage of time heaters are on when machine runs			
kWh/yr Heater Usage	336,960				
kWh/yr HVAC Impact	84240	If space conditioned, estimate 1/4 of heater power will impact HVAC			
Total kWh/yr due to extruder heaters	421,200				
Effectiveness of Blankets	80%	Expected Effectiveness of R5 Insulation over bare metal			
kWh/yr saved by blankets	336,960				
Estimated Yearly Savings	\$ 24,733				
# Complex Blankets	3	Estimated at \$1,200/blanket for multibarrel or long barrels			
# Simple Blankets	3	Estimated at \$600/blanket for simple or short barrels			
Total Blanketing Cost	\$ 5,400	Estimated Total Cost for blankets			
Utility Incentives	\$-	Note if applicable			
Net Estimated Cost	\$ 5,400	Total cost minus any incentives			
EstimatedBayback	0.22	Years			
Estimateurayback	3	Months			

Example Compressed Air Cooling Water Waste Heat Reclamation

- The plant utilizes the heat from the compressed air system to heat manufacturing space in winter.
- Cooling water loop fed through heat exchanger in the winter for space heating.

Compressed Air Cooling Water Waste Heat Reclamation

300 HP Gardner Denver Air Compressor Heat Reclamation in Winter (110°F Air) (installed cost ~ \$25k)

Water Cooling Bed

P

Upgrading Lighting Technology and Controls

Areas for Lighting Improvement

- I. Replace Incandescent lamps with fluorescent or compact fluorescent lamps (CFLs)
- II. Upgrade fluorescent fixtures with improved components
- III. Install lighting controls to minimize energy costs

IV. Employ New Lighting Technologies

Ref: aee CEM training material EPRI Power Quality and Energy Efficiency Presentation © 2012 Electric Power Research Institute, Inc. All rights reserved.

Potential Lighting Energy Savings Opportunities

- Fluorescent Upgrades
- •De-Lamping
- Incandescent Upgrades
- HID Upgrades
- Controls Upgrades
- Daylight Compensation

Ref: aee CEM training material EPRI Power Quality and Energy Efficiency Presentation

Opportunities in End Use Energy Efficiency: Compact Fluorescent Lamps

 Savings from replacing all incandescent bulbs with CFLs in a US household: ~1200 kWh/yr

- Savings nationwide if all households switched:
 - Total residential electricity consumption reduced by ~10%
 - US electricity consumption reduced by ~3.7%

CFLs use ~2/3 to 3/4 less than incandescent bulbs

>113 million US households

Upgrading Fluorescent Fixtures

- Improved fluorescent lamps
 T-8, T-10, T-12 Tri-phosphor lamps
 New T5 Lamps
 New Induction Lamps
- Electronic Ballasts
 - -Standard non-dimmable ballasts
 - -Consider dimming ballasts
 - -New program-start ballasts T5 and T8
- Reflectors

Ref: aee CEM training material

EPRI Power Quality and Energy Efficiency Presentation

Lighting Comparisons: Metal Halide vs. Others

Fixture & lamp #	W/lamp	rated life	initial lumens/ lamp	mean Iumens/ Iamp	lumens/ fixture	kWh/yr, 24/7 (8760 hrs)	ر \$(Cost at \$0.065/ kWh	
T5, 2-lamp	54	25K-36K	5000	4700	9K-10K	946.08	\$	61.50	
T5, 3-lamp	54	25K-36K			13K-15K	1419.12	\$	92.24	
T5, 4-lamp	54	25K-36K			18K-20K	1892.16	\$	122.99	-
T5, 6-lamp	54	25K-36K			28K-30K	3153.60	\$	204.98	-
T8, 2-lamp	28	20K-24K	3100	2567	5.1K-6.2K	490.56	\$	31.89	
T8, 3-lamp	28	20K-24K			7.7K-9.3K	735.84	\$	47.83	
T8, 4-lamp	28	20K-24K			10.3K-12.4K	989.88	\$	64.34	
T8, 6-lamp	28	20K-24K			15K-18.6K	1690.68	\$	109.89	-
T12, 2-lamp	55	20K	2650	2047	4.1	1716.96	\$	111.60	
Metal Halide	400	20K	40000	29000	29K	4029.60	\$	261.92	◄

Lighting study is a good idea

EPRI Power Quality and Energy Efficiency Presentation

Fluorescent Retrofits

- Existing System: T12 lamps with Magnetic Ballasts
- Retrofit Alternatives:
 - 1. T12 low wattage lamps (34W) replace lamps only
 - Less light, less energy consumption
 - 2. T8 (32W) replace lamps and ballasts
 - Same light, less energy consumption, better color, rendering, less map flicker, less ballast hum
 - Can operate 4 lamps per ballast
 - Can be tandem wired
 - Electronic ballasts can be parallel wired

Ref: aee CEM training material EPRI Power Quality and Energy Efficiency Presentation

Skylights used with T12s

Control Schemes for High Bay Lighting*

Entire Aisle Control from Ends

Entire Aisle Control from Ends & Middle

Individual Fixture Control

Individual Fixture Control w/ Lights On Ahead

* Program-start ballast

Ref: sensor switch

EPRI Power Quality and Energy Efficiency Presentation

Individual Fixture Control

Ref: sensor switch

EPRI Power Quality and Energy Efficiency Presentation

Forklift Enters Aisle – First Light Comes On

Ref: sensor switch

EPRI Power Quality and Energy Efficiency Presentation

Each Lights Comes on Directly at Forklift

Ref: sensor switch

EPRI Power Quality and Energy Efficiency Presentation

Each Light Comes on Directly at Forklift

Ref: sensor switch

EPRI Power Quality and Energy Efficiency Presentation

Light Comes on Directly at Forklift

Ref: sensor switch

EPRI Power Quality and Energy Efficiency Presentation

Light Comes on Directly at Forklift

Ref: sensor switch

EPRI Power Quality and Energy Efficiency Presentation

Lights Start Turning Off Behind Forklift

Ref: sensor switch

EPRI Power Quality and Energy Efficiency Presentation

Forklift Leaves Aisle, Lights Continue to Turn Off

Ref: sensor switch

EPRI Power Quality and Energy Efficiency Presentation

Forklift Leaves Aisle, Lights Continue to Turn Off

Ref: sensor switch

EPRI Power Quality and Energy Efficiency Presentation

Forklift Leaves Aisle, Lights Continue to Turn Off

Ref: sensor switch

EPRI Power Quality and Energy Efficiency Presentation

Lights Finish Turning Off

Ref: sensor switch

EPRI Power Quality and Energy Efficiency Presentation

Lighting Controls: EPRI Research Trajectory

2011 & the Next 4 Years of Progressive Research

- The plant primarily uses Metal Halide Fixtures for lighting in the two main buildings
- Each fixture accounts for ~458W of power, continually on
 - -Bldg 1 ~466 units
 - Bldg 2 ~ 337 units
- Median Light Value directly under
 Metal Halide fixtures
 ~ 27 fc

Lighting Measurements

• Lighting on 24x7

Estimated Lighting Load/Costs

~367kW or 3.22MWh/year

~\$237,000 k/year in power costs

Lighting Measurements

- Forty-Eight (48) T12 8 foot fixtures were found in the mezzanine storage area.
- The lights were left on at switch by top of stairs although there was no one present.
 - Approximate cost/day of leaving lights on 48 x .2kW x \$.0736/kW x 24hrs/day
 = \$16.90/day, ~\$6000/year
- The lights could be replaced with more efficient technology and/or add an occupancy sensor. *
- Utility may have incentive for occupancy sensors that could be placed where light switch is now –set for long delay.

* May be addressed through operational procedure

EPRI Power Quality and Energy Efficiency Presentation

LVANIA

- Potential change out:
 - (4) Bulb T5HO Fluorescent ~234W / fixture
 - (6) Bulb T8 Fluorescent ~222W/fixture
 - (6) Bulb T5HO Fluorescent ~324W/fixture
- Assuming one for one replacement with Metal Halides
- Estimated lighting load/costs (4) Bulb T5 HO Fixture
 - ~187kW or 1.9 MWh/year
 - ~\$121k/year in power costs
 - ~\$116k/year Savings

Payback including installation expected to be less than 1 year with Utility incentive included.

		000044 5			(0) 50070 (11)
	400W Probe-	320W Pulse-	(4) F54 I 5HO	(6) F5415HO	(6) F3218 "High
	start MH	start MH	Fluorescent	Fluorescent	Lumen
			_	-	Fluorescent
Number of Lamps	1	1	4	6	6
Service life	20,000 hours @	20,000 hours @	24,000 hours @	24,000 hours @	28,000 hours @
	10 hours/start				
Initial lamp light	36,000 lumens	30,000 lumens	20,000 lumens	30,000 lumens	18,600 lumens
output		-	-		-
Ballast	Probe-start	Pulse-start	Program start	Program start	Instant start
	magnetic				
Ballast factor	1	1	1	1	1.18
Initial system light	36,000 lumens	33,000 lumens	20,000 lumens	30,000 lumens	21,948 lumens
output					
Lamp watts	400W	320W	216W	324W	192W
System watts	458W	350W	234W	351W	222W
Relative system watts	100%	76%	51%	77%	48%
Initial system efficacy	79 lm/W	94lm/W	85 lm/W	85 lm/W	99 lm/W
Mean lumens	23,500 lumens	26,400 lumens	19,000 lumens	28,500 lumens	20,851 lumens
	@ 40% of lamp				
	life	life	life	life	life
Lumen maintenance	65%	80%	95%	95%	95%
Maintained system	51 lm/W	75 lm/w	81 lm/W	81 lm/W	94 lm/W
efficacy					
Color rendering	65 CRI	65 CRI	82-85 CRI	82-85 CRI	85 CRI
Starting Time	4 minutes	2 Minutes	<1.5 seconds	<1.5 seconds	<1 second
Re-strike Time	10 minutes	4 Minutes	<1.5 seconds	<1.5 seconds	<1 second
Color temperature	3000-4000K	3600-4200K	3000-5000K	3000-5000K	3000-5000K

Ref: accessfixtures.com

New Lighting Technologies – Induction Lamps

- Induction lamps
 - Long Life --- 100,000
 hours for lamp and
 ballasts
 - Philips QL lamps in
 55W, 85W, and 165W
 - New application with reflector to replace metal halides as signs lights for road and commercial signs.
 - Lasts four times as long

Ref: aee CEM training material EPRI Power Quality and Energy Efficiency Presentation

New Lighting Technology - LED lighting

- 80% of all new exit lights are LED Lights
- Other uses:
 - -Traffic Signals
 - -Commercial Advertising Signs
- EPRI is working on LED street light demonstration project

Basic and Advanced LED Lighting Technologies

Basic Technology Lower Efficiency

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Advanced Technology

Higher Efficiency

Courtesy: Philips Lighting

Efficacies of Different Common Light Sources Incandescents, Fluorescents, HIDs, and LEDs

Comparison of LED and HID Lighting

	HI	D						
HID Lamp	Photopic Initial Delivered Lumens	Photopic Average Delivered Lumens	System Watts	Recommended Number of Light Bars	Recommended Photopic Initial Delivered Lumens	Recommended Photopic Average Delivered Lumens Over 50,000 hours	System Watts	Energy Savings %
PS 70 (H)	3,500	2,200	90	2	3,400	3,230	55	-39 %
PS 100 (H)	5,650	3,550	127	2	3,400	3,230	55	-57 %
PS 150 (V)	9,800	7,200	190	4	6,800	6,460	104	-45%
MH 175 (V)	9,800	6,300	210	4	6,800	6,460	104	-51%
MH 250 (H)	13,250	8,300	289	5	8,500	8,075	128	-56%
PS 320 (H)	21,000	15,500	368	7	11,900	11,305	183	-50%
MH 400 (H)	22,700	14,500	455	9	15,300	14,535	232	-49%
PS 400 (H)	28,000	22,000	450	12	20,400	19,380	306	-32 %
HPS 70	4,450	3,900	105	2	3,400	3,230	55	-48%
HPS 100	6,650	6,050	130	2	3,400	3,230	55	-58 %
HPS 150	11,150	10,100	188	4	6,800	6,460	104	-45%
HPS 250	19,600	19,000	300	6	10,200	9,690	153	-49%
HPS 400	35,000	32,000	460	9	15,300	14,535	232	-50%

Ref: Beta-Kramer

LED* for Street and Area Lighting

LED – Light Emitting Diode, a semiconductor material that when energized emits light.

EPRI Power Quality and Energy Efficiency Presentation

Light Patterns and Color Vary

Example Audit Outdoor Perimeter Lighting Replaced with LED

- The plant has replaced 20 of their 96 outdoor metal halide lights (454W each) with LED units (56W each).
 - Saving \$1760/year
- LED units will cost less per year to operate, but payback is over 9 years.
- Replacing all outdoor units with LEDs could save \$6.7k/year, but at a current expense of about \$61k.

Technology	Cost/Fixture	Total Fixtures	kW/Fixture	Hrs/Year	KW Total	kWH Total	Cost/kWH	Cost/Year	
Metal Halide	\$216	1	0.458	4380	0.458	2006.04	0.05	\$100.30	
LED	\$800	1	0.056	4380	0.056	245.28	0.05	\$ 12.26	
							Savings	\$ 88.04	
							Costs	\$800	
							Payback	9.04	Years

Use of Premium Efficiency Motors

Electric Motor Use and Energy Savings in US

- U.S. Installed Base is 90 Million Electric Motors
 - Industrial & Commercial Electric Motors is 40 Million
- According to DOE estimates (1998), potential industrial motor system energy savings using mature, proven, cost-effective technologies range from 11-18 percent of current annual usage or 62 to 104 billion kWh per year in the manufacturing sector alone
 - Savings is valued up to \$5.8 billion
 - Reduction of CO2 emissions of about 29.5 million metric tons annually
- DOE (2010) estimates that the new small motor efficiency rule will save 2.46 quads (1 quad = 10^15 BTU) of cumulative energy over 30 years (2015–2045)
 - 2.13 quads of savings result from standards on capacitor-start (singlephase) motors
 - 0.33 quads of savings result from standards on polyphase motors

Global Perspective

- Electric motor-driven systems makes up about 19 percent of the global electricity demand
 - This is more than twice as much as the next-largest user, lighting
- Electricity consumption by motors could double to 13,360TWh per year by 2030
 - Equivalent to emitting 8,570 million tons of CO₂
- End users are now spending about \$565 billion on electricity to power electric motors
 - This could increase to \$900 billion by 2030 without improvement
- Use of high-efficiency motors alone could cut energy consumption by 4-5%
- By adopting the best technologies, the world's electricity demand could be cut by 3,890TWh a year by 2030
 - Equivalent to reducing CO₂ emissions by 2,490Mt

Source: IEA, Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems, 2011

Motors and Drives - Minimum Energy Performance Standards (MEPS)

meet IE4

Direct drive applications to improve system efficiency

Motors and Drives (Footnotes from previous slide)

¹EPAct 1992 covered only general purpose motors in the 1-200 HP range

- ²European CEMEP was a voluntary standard with three efficiency classes EFF1-3; now replaced by IEC 60034-30
- ³EISA 2007 standards mandatory for new motors from December 2010. Expands standards to all general purpose motors upto 500HP as well as Type II motors
- ⁴IEC60034-30 mandates all motors in EU to meet IE3 by January 1, 2015
- ⁵Small motors are defined as 2-digit frames not part of EISA 2007. Standard will be mandatory from 2015
- ⁶EISA Future efficiency standards to focus on IE4 and introduction of drives to increase energy savings

Electric Motor Use

- Process motor systems account for 63% of all electricity used in industry
- Most motors are at least 30% under loaded
- A third of motors are run below 50% load

United States Industrial Motor Systems Marketing Assessment Executive Summary, U.S. Department of Energy, December 1998

Motor Decisions Matter web site

"Introduction to Premium Efficiency Motors" - by the Copper Development Association

Induction Motor Losses (1)

- Induction Motor Losses
 - Power Loss
 - Magnetic Core Loss
 - Friction and Windage Loss
 - Stray Load Loss

Type of Loss	Typical % of Losses 4-Pole Motors	Factors Affecting These Losses
Stator winding losses	35 to 40	Stator conductor size and material
Rotor losses	15 to 20	Rotor conductor size and material
Stator core losses	15 to 20	Type and quantity of magnetic material
Stray load losses	10 to 15	Primarily manufacturing and design methods
Friction and windage	5 to 10	Selection/design of fans and bearings

Reference: NEMA Stds. MG 10-1994, Table 2-2.

The above values show the typical loss distribution for medium induction motors. Speed, size, and enclosure type lead to wide variations in some of these proportions, particularly the core and friction and windage losses.

<u>"Introduction to Premium Efficiency Motors"</u> - by the Copper Development Association

EASA, Understanding Energy Efficient Motors. [Online]. Available: http://www.easa.com/indus/ee_399.pdf

Induction Motor Losses (2)

- Power losses (also called I²R losses) and stray load losses appear only when the motor is operating under load
- Power losses are comprised of stator and rotor I²R losses
 - They are therefore more important in terms of energy efficiency
 - Stator losses may make up to 66% of power losses
- Magnetic losses can account for up to 20% of total losses

Typical Induction Motor Efficiency

EASA, Understanding Energy Efficient Motors. [Online]. Available: http://www.easa.com/indus/ee_399.pdf

EPRI Power Quality and Energy Efficiency Presentation

Improving Induction Motor Efficiency (1)

WHAT MAKES AN ELECTRIC MOTOR ENERGY EFFICIENT?

http://www.iea.org/Textbase/work/2006/motor/Benkhart%20APT%20May%2016.pdf

Efficiency Opportunity Through Motor Rewinding

- Traditional fast rewinding can decrease efficiency by 20%
- Since motors are frequently operated for 20 to 30 years, a motor may be repaired 3 to 5 times in its service life
- For every new motor sold, approximately 2.5 motors are repaired
- Improper rewinding can significantly decrease motor efficiency (actual numbers vary from source to source, but in the range of 5-20%)
- Sophisticated rewind can increase efficiency
- Improved methods of rewinding failed motors can contribute an additional 4.8 billion kWh (DOE, 1998)

Guidelines for maintaining motor efficiency during rebuilding, Electrical Apparatus Service Association (EASA), 1999

Induction Motor Energy Opportunities Summary

- Use of copper rotors can decrease rotor losses
- Use of thinner laminations may decrease magnetic losses
- Use of better steel lamination materials
- Careful motor selection based on load
- Proper operation balanced supply, less voltage harmonics…
- Specialized rewinding can improve efficiency
- The next step Super Premium Efficiency Motors
- Large scale improvements also possible in single-phase induction motors

Good Place to Start – Your Spare Inventory

EPRI Power Quality and Energy Efficiency Presentation

- Its Rarely Justifiable to replace a motor before failure.
- Tools like DOE's ITP Motor Master + can help you find more efficient replacements.

Example Motor Efficiency Assessment

- Plants keeps many backup motors in spares
- In some cases, plant replaces process motors with like units or rewinds for larger motors if possible.
- Replace failed motors with like units
 - DOE ITP Motormaster+ not being used for determining most efficient motor replacements.
- As plant equipment is not new, "like" motors may not be most efficient.

1 hp, 80% => 85.5% Premium

5hp, 87.5% => 91.7% Premium

50hp, 87.5% => 95.0% Premium

125hp, 94.5% => 95.8% Premium

Example Motor Efficiency Recommendations

- Assessment of motor efficiency of inventory is in progress from nameplate data
 - Spot analysis shows that there are opportunities for energy efficiency savings
 - 50 hp range may represent largest opportunity for this customer
- Recommend detailed inventory against Motor Master + and Motor Master + International
 - Begin procuring more efficient **replacement** motors
 - Focus on units with highest savings/year versus motor cost
 - (e.g. payback for 50hp premium efficiency motors ~3 years based on list price)

ECM No L	Jse Premium	n Efficient Motors										
Cost/kWh	0.0734	Average kWh Costs										
Operating Hrs/yr	8000											
Motor Loading	75%	% Loaded										
Motor Size (HP)	kW	Existing Eff.	Cost	t/Year (A)	Prem. Eff.	Cost	t/Year (A)	Savi	ngs/Year	No. in Plant	Sav	ings/Year
1	0.7456	0.8	\$	410	0.855	\$	384	\$	26	30	\$	792
5	3.728	0.875	\$	1,876	0.917	\$	1,790	\$	86	50	\$	4,297
50	37.28	0.875	\$	18,764	0.95	\$	17,282	\$	1,481	25	\$	37,033
125	93.2	0.945	\$	43,434	0.958	\$	42,845	\$	589	10	\$	5,894
		Estimated Yearly Savings						\$	48,016			
A. Cost per Year calculated by (kW)x (Motor Loading)x(Hours/Year)/Effici												
B. From Motor Master Plu	lotor Master Plus List											

Remember Load Factor (% Loaded)

- Theoretical:
 - kW Saved = 0.746 * hp * [(1/eff. Motor 1)- (1/eff. Motor 2)]
- Actually:
 - kW Saved = 0.746 * hp * LF *[(1/eff. Motor 1)- (1/eff. Motor 2)]
 - Where LF = Load Factor (percent of full load)
- If actual load is less than 50% of its nameplate, efficiency nameplate is meaningless.
- Part load efficiency number would be to needed accurately to calculate
 - -i.e. 75%, 50%, 25% load efficiencies

Watch Out for Direct-Coupled Centrifugal Loads when estimating energy efficiency

- Energy Efficient motors have less slip.
 - Motor will run a few rpm faster
- For direct-coupled centrifugal loads (Pumps and Fans), this can result in an increase in work output
- When the high efficiency motor is expected to save from 3% to 5% of full load hp, this can eat away at savings.

- Example: A new motor runs 10 rpm faster
- Speed Ratio: 1760/1750= 1.006
- Affinity Laws:

 $(N_2 / N_1)^3 = HP_2 / HP_1$

 $HP_2 = HP_1 * (N_1 / N_2)^3$

Hp increase= (1.006)^3=1.02

2% Energy Use Increase

Cogged and Synchronous Belts

- Standard V-belt drives can stretch up to 3% of the original length throughout the life of the belt.
 - If proper tension is not maintained, the required friction can be lost and the belt can slip. When slip occurs, additional heat is generated between the belts and grooves.
- At the time of proper installation, V-belts can run between 95-98% efficiency. The efficiency then falls to an average of approximately 93% during normal operation.
- Cogged V-Belt could save about 2% on energy, uses same pulleys as V-belt, ~95% Efficient
- Synchronous belts (also called timing, positive drive or hightorque drive belts) are on average about 5% more efficient than standard V-belts., ~ 98% Efficient
 - Require installation of mating toothed drive sprockets

Ref: US DOE Energy Tips- Motor Systems, Replaced V-Belts with Cogged or Synchronous Belt Drives

EPRI Power Quality and Energy Efficiency Presentation

V-Belt drive ~ 93% Efficient

Cogged Belt Drive

~95% Efficient

Synchronous Belt Drive ~98% Efficient

Cogged and Synchronous Belts

ECM No Replace V-Belt with	h Cogged	or Synchronous Belt
Cost/kWh	0.05	Average kWh Costs
Operating Hrs/yr	8760	
V-Belt Efficiency	0.93	Typical Value over lifetime
Cogged-Belt Efficiency	0.95	Typical Value over lifetime
Synchronous Belt Efficiency	0.98	Typical Value over lifetime
Motor Size	100	Total HP
Motor Efficiency	0.9	Percent
Motor Power Usage	83	kW
Motor Diversity	100%	% of time Motor is running
Load Diversity	75%	Average Load
Net Hours Base Loaded	6570	
Power Savings Cogged Belt	1.7	kW
Power Savings Synchronous Belt	4.2	kW
Yearly Energy Use with V-belt	544,580	kWh
Energy Savings Cogged Belt	11,465	kWh
Energy Savings Synchronous Belt	27,785	kWh
Estimated Yearly Savings Cogged Belt	\$ 573	
Estimated Yearly Savings Synchronous Belt	\$ 1,389	
Cost/Cogged Belt	\$ 250	Site & App specific
Cost/Synchronous Belt and Sprockets	\$ 1,000	Site & App specific
Estimated Payback Cogged Belt	5.23	Months
Estimated Payback Synchronous Belt	9	Months

Remember:

For centrifugal fans and pumps, which exhibit a strong relationship between operating speed and power, synchronous belt sprockets must be selected that take into account the absence of slippage.

Operating costs could actually increase if slippage is reduced and a centrifugal load is driven at a slightly higher speed.

Ref: US DOE Energy Tips- Motor Systems, Replaced V-Belts with Cogged or Synchronous Belt Drives

Efficient Application of Adjustable Speed Drives
Constant Speed Control

- Equipment is typically oversized to meet most extreme system requirements
- Motors are upsized to the nearest horsepower about the required for the oversized equipment
- In most cases, full performance is not required by the system
- The motor is usually in continuous full speed operation.

Running a motor at full speed wastes energy (\$\$\$\$) when full output is not required by the process.

Constant Speed Control Example

Motor Driven Process Using Flow Control Valve

Constant Speed

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

184

Adjustable Speed Control

- Valves, clutches, brakes, and dampers typically adjusts the output of the equipment, wasting energy to varying degrees.
- Variable Speed Drives

 (a.k.a. Adjustable Speed
 Drives (ASDs) save
 energy by modulating the
 output of the motor to
 satisfy the changing
 system requirements.

ASDs Allow for Energy Efficient Control of Process Outputs

Adjustable Speed Control Example

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Example Losses In System Elements With Mechanical Control Versus ASD Control at four load Levels

Screening Methodology

- Good Candidate for ASD if:
 - High Annual Operating Hours
 - Variable Load Characteristics
 - Moderate To High Horsepower Rating

Required Information

- Motor Horsepower Rating
- Annual Equipment Operating Hours
- Fraction of Time Operate at Less Than Rated Load
- Amount of Flow Variation

Load Duty Cycle – Excellent Candidate

EPRI Power Quality and Energy Efficiency Presentation

EPEI ELECTRIC POWER RESEARCH INSTITUT

Load Duty Cycle – Good Candidate

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

E

Load Duty Cycle – Poor Candidate

Example of a Poor ASD Candidate

Example Findings in Plant

- The combustion blowers on the 5 kilns before the rotating drum dryers all utilize 60hp Motors with a throttling damper.
- Initial tests and measurements show that the operating point for flow, fan is loaded about 50% therefore a VFD could be more feasible.

Candidate 1 – Combustion Blower

WADDOLD AT MILECONDUCE A SCIENCE LIMIT FOR AND ADDOLD ADD ADDOL

Good Drive Candidate: Combustion Blower

ECM – Turn off Blower!

...Combustion blowers are manually controlled via SCADA by operator. Found several instances of hours of "dead heading" a fan with the throttling damper closed.

Candidate 2 – Dryer Blower

EPRI Power Quality and Energy Efficiency Presentation

EPCI ELECTRIC POWER RESEARCH INSTITUTE

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Poor Drive Candidate: Dryer Blower

© 2012 Electric Power Research Institute, Inc. All rights reserved.

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Compressed Air Best Practices

Excellent Resource: Improving Compressed Air System Performance: A Sourcebook for Industry, US DOE

Diagram Ref: Improving Compressed Air System Performance: A Sourcebook for Industry, US DOE

Appropriate and Inappropriate Use

Ref: EPRI PQ Investigator

- Use if safety enhancements, significant productivity gains, or labor reductions result (typically 10% to 15% efficient)
 - Pneumatic tools, packaging/automation equipment, conveyors, etc.
- Inappropriate Uses
 - Open blowing, sparging, aspirating, atomizing, transporting liquids or light solids, cooling operations, vacuum generation, abandoned equipment
 - Low-pressure blowers may be a more efficient alternative

Appropriate Use –Automation Operation

Ref: Improving Compressed Air System Performance: A Sourcebook for Industry, US DOE

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Example Inappropriate Use....

- Compressed air found being improperly used to hold open boiler intake damper.
- 90 PSI, ~1/4 dia
 - Estimated Cost (\$.05/kWh)
 ~\$4,500/year in waste

Watch Those Leaks!

- Leaks
 - Keep < 10% of compressor capacity
 - May be calculated as shown
- Establish a Leak Prevention Program
- See <u>www.eere.energy.gov</u>

At \$.05/kWh:

- a \$100/year leak cannot be felt or heard
- a \$400/year leak can be felt but not heard
- a \$700/year leak can be felt and heard

From Fundamentals of Compressed Air Systems course notes, Compressed Air Challenge

Ref: Improving Compressed Air System Performance: A Sourcebook for Industry, US DOE

Leakage (cfm free air) = (V x (P_1 - P_2)/T x 14.7) x 1.25

where: V is in cubic feet P_1 and P_2 are in psig T is in minutes

Leak Detectors – Ultraprobe 15,000

Leaks

 -air
 -steam
 (44kHz)

 Motor Bearing Analysis

Example Compressed Air Survey

- Plant had 12 air compressors
 - All Constant Speed
 - 200hp and 125 hp units
 - 94.5% to 95% efficient
 - No trim compressors
- Compressed air used extensively throughout plant for product positioning in production lines.

Example Compressed Air Survey

- 15 Leaks found in spot survey
 - In compressor rooms
 - At backup compressor connection
 - Around air dryer connections
 - Throughout plant
 - Line "A" (partial walkdown)
 - Adjacent Line (partial walkdown)
 - ~ \$7,000-\$8,000/year in losses from those identified – likely much higher overall

Backup Compressor Connection

Piping above Dryer

Ultraprobe 15000

Checking Piping Leaks Above Air Dryer

Pressure and Electricity Costs

- High pressure air costs more to produce than lower pressure air.
- For the example system operating at 100 psig, rule of thumb, every 2 psi equates to a 1% increase in energy costs.

100 HP Compressor Calculation

Compressor	100	hp
Annual Operation	8760	hours
Electricity Cost	0.0734	\$/kWh
Motor Efficiency	0.9	Efficiency

Annual Electricity Cost \$53,296

Annual Cost = (hp motor)(0.746)(hours/year)(\$/kWh)/(motor efficiency)

Header Pressure	Pressure Energy Cost Increase		Cost/Year	
100	0%	\$		53,296
102	1%	\$		53,829
104	2%	\$		54,373
106	3%	\$		54,927
108	4%	\$		55,493
110	5%	\$		56,071
112	6%	\$		56,660
114	7%	\$		57,262
116	8%	\$		57,877
118	9%	\$		58,505
120	10%	\$		59,147

Bottom Line: Look for opportunities to lower overall system pressure!

Use Outside Air for Compressor Air Make Up

- Air can be compressed more efficiently when the intake air is cooler.
- Rule of Thumb Power required by air compressor reduces by 1% for every 3°C / 5.4°F drop in inlet air temperature.
- Example: Plant has 200 hp air compressor, 8000 hours/year operation, 95% efficient Average inside air temp = 74 deg F, Average outside air temp =60 deg F, \$0.0734/kWh

ECM No Bring in Outside Air for Compressor Air Make Up					
Cost/kWh		0.0734	Average kWh Costs		
Operating Hrs/yr		8000			
Air Compressor Size		200	Total HP		
Motor Efficiency		0.95	Percent		
Compressor Power Usage		157	kW		
Compressor Diversity		100%	% of time compressor is on		
Load Diversity		75%	% of time at or near full load		
Net Hours Base Loaded		6000			
Average Inside Air Temp		74	Deg F		
Average Outside Air Temp		60	Deg F		
Reduction Factor		2.6%	Power Reduction Factor = 1-(T outside/T inside)		
Estimated Electricity Consumption Decrease		4.1	kW		
kWh/yr saved		24,720			
Estimated Yearly Savings	\$	1,814			
# of required intakes		1			
Estimated cost	\$	1,750	Based on \$1750 per intake		
Utility Incentives	\$	-	Note if applicable		
Net Estimated Cost	\$	1,750	Total cost minus any incentives		
EstimatedPayback		0.96	Years		
		12	Months		

Power/Output Relationships by Control Type

- **Blow Off** –To avoid surge, centrifugal compressors may discharge compressed air to the atmosphere to control compressed air output to the system.
 - Blow-off control is the least efficient method of controlling compressed air output, since input power remains constant as the supply compressed air to the system decreases.

- **Modulation Control** the position of the inlet air valve is modulated from full open to full closed in response to compressor output pressure.
 - Modulation control typically employs PID control with a narrow control range about <u>+</u> 2 psig. Inlet modulation is a relatively inefficient method of controlling compressed air output.
- Load/Unload Control Load/Unload on control points from 90 psig-100 psig.
 - Power is drawn when unloading (60% to 30%) of full load.
- Variable-Speed Control Rotary-screw air compressors can be equipped with variable frequency drives to vary the speed of the screws and the corresponding compressed air output.
 - As in other fluid flow applications, the variation of speed to vary output is extremely energy efficient.
- **On/Off Control** The compressor turns on and begins to add compressed air to the system when the system pressure falls to the lower activation pressure. Typical lower and upper activation pressures would be 90 psig and 100 psig.
 - On/off control is the most efficient type of part-load control, since the compressor draws no power when it is not producing compressed air.

Compressed Air Storage

- Stores compressed air until needed
- Use of compressed air storage tanks can
 - Smooth out demand events during peak periods.
 - 2 psi increase in header pressure can lead to 1 to 2 percent higher energy consumption
 - Smoothing out these peaks reduces energy use
 - Control the rate of pressure drop to end use
 - Protect critical pressure applications from other events in the system.
 - Providing some PQ ride-through as well!
 - If plant has storage tanks, PQ issues are normally not an issue with the compressed air

Example Compressed Air Survey

- Air Knifes (many)
 - From main air compressor system
 - ~ \$1800+/year
 - From local 1.5kW blower (measured at motors)
 - ~\$1,100/Year
- Plant uses air at 100 to 120 psig
 - Potential to lower pressure to reduce energy consumption
 - 10 psig rise in pressure can result in 5% power increase

Air Knife

Local Blower on Process Line

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Chilled Water Systems

Chilled Water Systems

 The plant/building Chilled water system can represent a large part of the overall load.

ECM – Reset the Supply Water Temperature

- Increasing the chilled water supply temperature can decrease chiller electricity consumption significantly.
- As a Rule-of-Thumb: *Raise Chilled Water* Temp by 1 deg F for 1.7% decrease in compressor energy consumption.

ECM - Reset Chilled Water Temp

ECM No Raise Chilled Water Temp			
Cost/kWh	0.0734	Average kWh Costs	
Operating Hrs/yr	8760		
Chiller Tonnage	1000	Tons	
kW/Ton	0.6	Based on Type	
Chiller Compressor Power Usage	600	kW	
Chiller Diversity	100%	Percentage of time chiller is on	
Compressor Diversity	50%	% of time at or near full load	
kWh/yr Compressor Usage	4380		
Current Chilled Water Temp	42	Deg F	
Proposed Chilled Water Temp	55	Deg F	
Estimated Electricity Consumption Decrease	133	kW	
kWh/yr saved	580,788		
Estimated Yearly Savings	\$ 42,630		
Estimated Payback	ack Immediate		

Available Capacities

 Reciprocating machines are manufactured in capacities from 0.5 to 150 TR.^{*} Air-cooled reciprocating chillers have an energy usage of 1.0–1.3 kW/ton while water cooled chillers have energy usage between 0.7 and 1 kW/ton.

Capacity Control Valve (2- or 3-Way)

- Air cooled screw chillers are available with cooling capacities between 70 tons and 500 tons and energy usage between 1.1 and 1.5 kW/ton. Water cooled screw chillers are available with cooling capacities between 70 tons and 750 tons and energy usage between 0.65 and 0.9 kW/ton.
- Centrifugal chillers are generally manufactured in capacities from 90 to 1,000 tons, with most units falling in the range of 150 to 300 tons. Centrifugal compressor chillers are the most energy efficient chillers with energy usage between 0.5 and 0.6 kW/ton.
- * Tons of Refrigeration

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.
ECM- Reduce Condenser Water Temperature

- Chillers operate more efficiently when the condensers are provided with cooler water.
- As a Rule-of-Thumb, for every 1 deg. F temperature drop in condensing water temp, a 1% savings can be expected.
- This is accomplished by changing the cooling tower water temp set point.

ECM- Reduce Condenser Water Temperature

ECM No Reduce	Conden	ser Water Temp
Cost/kWh	0.0734	Average kWh Costs
Operating Hrs/yr	8760	
Chiller Tonnage	1000	Total Tons
kW/Ton	0.6	Based on Type
Chiller Compressor Power Usage	600	kW
Chiller Diversity	100%	Percentage of time chiller is on
Compressor Diversity	50%	% of time at or near full load
kWh/yr Compressor Usage	4380	
Current Cooling Tower Setpoint	85	Deg F
Proposed Cooling Tower Setpoint	75	Deg F
Estimated Average Temperature Reduction	5	
Est. Chiller Electricity Consumption Decrease	30	kW
kWh/yr saved	131,400	
Estimated Yearly Savings	\$ 9,645	
Estimated Payback	Immediate	

 Plant must check chiller mfr make sure that proposed set point is not below the min recommended condenser water setting.

Use of ASDs on Chillers

An OptiSpeed drive is the single largest energysaving retrofit you can apply to your chiller plant.

(1-3 year payback)

Advanced Technologies in Process Heating

Why is Process Heating Important?

- Process heating accounts for
 - 21% (1/5th) of total industrial energy use
 - 2 to 15% of total industrial production cost
- Process temperature range: 300 5,000+°F

Source: Energy Information Administration, 2006 Manufacturing Energy Consumption Survey

Industrial Net Electricity Consumption (End Use)

- Process Heating uses 12.1% of total net electricity in manufacturing and increasing annually
- Total Industrial Net Electricity Consumption

= 2,850 Trillion Btu (= 834 Billion KWh)

Source: Energy Information Administration, 2006 Manufacturing Energy Consumption Survey

Manufacturing Process Heating - Consumption of Electricity by Sector, 2008

Source: Electrotechnology Reference Guide. EPRI, Palo Alto, CA: 1022334.

EPRI Power Quality and Energy Efficiency Presentation

FLECTRIC POWER

What is Process Heating?

Supplying heat to materials in

Furnaces
Ovens
Heaters
Thermal oxidizers
Dryers
Boilers

Other heating equipment

Source: U. S. Department of Energy -Energy Savings Assessment (ESA) Process Heating Assessment and Survey Tool (PHAST) Introduction, Arvind Thekdi, 2007

Process Heating System Components

- Heating devices: generate and supply heat
- Heat transfer devices: move heat from source to product
- Heat containment devices: e.g. furnaces, heaters, ovens
- Heat recovery devices
- Support Systems: e.g. sensors and controls, materials handling, emission control, safety, other auxiliary systems

Categories of Process Heating

Combustion-based

Boilers and steam generators
Atmosphere generators
Blast furnaces
Crucible furnaces
Dryers
Indirect process heaters
Kilns

Muffle furnaces

Ovens

Radiant tube heat treat furnaces

Reverberatory furnaces

Salt bath furnaces

Solid waste incineration

Thermal oxidizers

Heat recovery and heat exchange

Electric Processes

Resistance

Electromagnetic Waves

- Induction
- Plasma Arc

EPRI Power Quality and Energy Efficiency Presentation

 $\ensuremath{\mathbb{C}}$ 2012 Electric Power Research Institute, Inc. All rights reserved.

- Infrared (IR)
- Microwave (MW)
- Radio Frequency (RF)
- Ultraviolet (UV)

A Flashback to High School Physics

$E = hc/\lambda$ Joules

h=Plank's Constant

C= Speed of light

 $\lambda = Wavelength$

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Four Technologies

...Three Industries

Induction Heating

- Used for heating directly, heat treating or melting conductive materials, typically metals.
- Similar to Transformer Eddy current heating
- Plastics and other nonconductive materials (e.g., chemicals) often can be heated by first heating a conductive material that transfers heat to the nonconductive material.
- Frequency: 60Hz to 800KHz
- Power rating: 1 3,000KW

EPRI Power Quality and Energy Efficiency Presentation

Induction coil (Primary Winding)

ELECTRIC POWER RESEARCH INSTITUTE

Induction Heating – Advantages

- Rapid heating of parts: Development of heat within the workpiece by induction provides much higher heating rates
- Fast start-up of equipment
- Lower energy costs: When not in use, the induction power supply can be turned off thus saving energy.
- Easier process control and monitoring: It is easier to control repeatability and monitor the process on a part-by-part basis since it is not a batch process.
- Compact footprint: Induction heating installations are generally much smaller than conventional gas fired heating furnaces for equivalent throughput.

Example of Induction Heating Application – Paper Industry: Paper Drying

- New approach for evaporating water from the moist web to produce a dry sheet of paper
- Impulse dryers can be retrofitted to existing machines
- Typical modern newsprint machine producing 180,000 tons of paper would save 60 Million KWh (216,000 GJ) per year
- Advantages:
 - Uses 50% less energy to remove water than conventional dryers
 - Produces improved quality paper

EPRI Power Quality and Energy Efficiency Presentation

Electric Impulse Drying Using Induction

PAPRICAN – Pulp and Paper Research Institute of Canada

Infrared Heating

- Wavelength range 0.76 10 microns
- Line-of-sight technology
- Suited for surface heating applications

Electric IR – Characteristics

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Infrared Benefits

- Immediate turn on/off
- Full output obtained within seconds
- Reduced environmental concerns (no point emissions)
- Energy efficiency > 90%

Electric IR Tunnel Oven for Powder Coat Curing

Electric IR System to Pre-Heat Aluminum Billets

Infrared: Applications

- Textile and Paper industry for drying
- Latex and adhesive drying
- Annealing and curing of rubber
- Powder coating of metal (automobile industry)
- Preheating cast aluminum wheels
- Heating aluminum strips prior to bending
- Ink curing
- Drying of parts

- Fine soldering
- Silk screening
- Molding plastics by blowing, vacuuming, squeezing the plastic between calendar rolls

Example of Infrared Application – Food Industry: Tomato Peeling

- Tomatoes are fed through conveyors
- IR heating heats the surface skin of the tomatoes
- Heated tomatoes pass through vacuum valve and a core scrubber to peel the skin
- Better than lye peeling
- Reduces waste water and peeling loss

UC Davis and USDA Research

Microwave Heating

- Suited for drying applications of polar molecules (i.e. water)
- Industrial microwave frequencies
 - –915 MHz
 - -2.45 GHz (typically used)
 - 5.8 GHz
 - 24.125 GHz
- Recent advances in solid state amplifier devices make improvements to magnetrons more economically attractive

The Magnetron

The device in microwave ovens that generates microwaves

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Microwave Heating Applications

Chemicals

 Applications ranging from curing adhesives to preheating resins before extrusion

Food Processing

 Applications for food processes that require a heat cycle including drying, pasteurizing and sterilization

Textiles and Nonwovens

 Fabrics that require drying benefit from pre-drying, post drying or total drying

Other Applications

- Ceramics, pharmaceuticals, electronics
- Waste treatment

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Microwave Heating Advantages

- Quick heat penetration
- Selective heating:
 - Different materials absorb microwave energy at different rates; a product with many components can be heated selectively.
- Increased flexibility:
 - Complex shapes heat more uniformly with microwave energy because heat is not generated directly on the surface.
- Combination with conventional methods:
 - Because microwave units are more compact, they may be added before, after, or inside conventional heating or drying units.
 - This can decrease processing times by as much as 75%.

Example of Microwave Application - Food Industry: Bacon Cooking

- MW cooking systems operate at 400 to 500 KW
- Operating frequency: 915MHz
- Throughput: 50,000 to 60,000 slices of bacon per hour.
- Finished bacon is packed and frozen for distribution.
- Approximately 150 to 200 million kilograms of raw bacon processed in USA per year

Source: http://www.microdry.com/btd.htm

Radio Frequency Heating

1,500+ RF units installed since 1977

Similar to microwaves

Longer wavelength = less energy

Suitable for more "delicate" applications

Better suited for larger surface area than microwaves

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

RF Heating Advantages

- Quick heating: 2 to 20 times quicker than by conventional methods.
- Uniform heating: Heating is more uniform throughout the cross section
- Selective heating/drying: Similar to microwave heating
- Improved product quality: Heat sensitive materials are not exposed to high temperatures for long times, improving product strength and quality.
- High energy efficiency: The efficiency, defined as the energy put into the material divided by the power supplied to the equipment, is typically 50 to 70% for RF and microwave heating.

Industrial Energy Efficiency Case Studies

Company Alpha

- Manufactures materials used for construction
- Uses rock crushers and drying kilns
- Identified savings
 - From \$51,000 to \$67,000 with
 - associated costs of around \$72,000 to \$81,000.
 - Simple payback from 1.2 to 1.4 years on average
 - Shortest: immediate
 - Longest: ~7 years

Company Alpha Considerations

- "Static Load" of between 300 to 500 kW
 - Equipment operating regardless of production
 - \$162,500 per year at \$0.065/kWh
 - 14.5% to 17% of electrical usage per year
 - Should identify, turn off if possible
- Weather and humidity affect energy usage
 - Northern climate
 - Raw material stored outside
- Main energy use is natural gas

 Electrification opportunity?

Alpha Electrification Opportunity

Experiment: Infrared vs. Induction

- TAC Center in Alabama
 - Will material be heated effectively and in what time frame?
 - Testing proved both could work
- Alpha test project would verify whether or not electrification would be preferable

Induction

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Gas vs. Electricity

 Gas ovens can be less efficient and cost more to operate

 Alpha kiln more efficient than this

	FACTOR	ORIGINAL	REPLACEMENT			nghàm, Ac)
Casa 1	Equipment	Cap fired even addition	Infrared probast	Case 1		
Case 1		Gas-fired oven addition		Gas	9 / 91 000	Cubic ft Natural Gas
	Equipment rating	1.97 Million BTU	133 KW	003	5,451,000	
	Equipment Efficiency	15%	65% (Short Wave)		\$ 56,946.00	per year
	Load Factor	55%	45%			
	Energy Consumption/yr	9491 Million BTU	524286 kW Hrs	Electricity	524,286	kWh
					\$ 34,078.59	per year 🕊
	FACTOR	ORIGINAL	REPLACEMENT			
Case 2	Equipment	Steam oven	Infrared heating	Case 2		
	Equipment rating	2.1 Million BTU/Hr.	144 kW	Gas	9,450,000	Cubic ft. Natural Gas
	Equipment Efficiency	15%	65% (short wave)		\$ 56,700.00	per year
	Load Factor	51.40%	45.60%			
	Energy Consumption/yr	9450 Million BTU	576000 kW Hrs.	Electricity	576,000	kWh
					\$ 37,440.00	per year 🦰
	FACTOR	ALTERNATE	REPLACEMENT	7∟		
Case 3	Equipment	Gas-fired oven	Infrared heating	Case 3		
	Equipment rating	15.6 Million BTU/Hr.	940 kW		52,650,000	Cubic ft. Natural Gas
	Equipment Efficiency	10%	65% (short wave)	Gas	\$ 315,900.00	per year
	Diversity Factor	75%	75%			
	Load Factor	51.40%	45.60%		2,820,000	kWh
	Energy Consumption/yr	52650 Million BTU	2.82 Million kW Hrs.	Electricity	\$ 183,300.00	per year 🥌

Estimated Rotary Kiln Dryer Efficiency					
Production Rate	255		Tons/Hr		
Specific Heat of Product Granules	0.193		BTU/lb Farenheit		
Process Input Tempature	45		Average Annual Temp		
Process Output Temperature Requirement	200		Deg. F		
Temperature Difference Requirement	155		Delta T		
Gas Energy Input	25,000,000		BTU/hr (max = 50MMBTU, Typical 20-30MM BTU)		
Electric Energy Input	164.9		kW (based on 95% Efficient Motors)		
Estimated Energy Input (Gas + Electric)	25,562,657		BTU/hr		
Process Heating Requirement (BTUs/Hr)	15.256	650	BTUs/Hr		
Estimated Rotary Kiln Efficiency	60%		Energy Input		

 Electricity calculated to be \$149/hr

(Source: TAC Dirmingham AL)

• Gas-\$42/hr

Alpha – Valve vs. ASD

- Valve normally around 20% open
- At times, blower "dead heads"

Valve appears to be closed

Alpha – Valve vs. ASD²⁰⁰

- Blower 1:
 ASD may save
 - significant energy
- Blower 2:
 - ASD may save some energy

Good deal of time above 70% flow

ELECTRIC POWER

Alpha – ASD Application

- May install drives to save energy in the long term
- May also turn off blower when valve is closed for immediate savings.

ЕСМ	Savings/ yr	Cost	Simple Payback	
Use AC Drives for 60 hp combustion air blowers to replace throttling damper scheme. (typical 5 places)	Best Case: \$14,960 Worst Case: \$10,495	\$36,390	Best Case: 2.43 years Worst Case: 3.47 years	Cost includes estimated labor of \$1500 per installation. Best and Worst estimates based on analysis of two Dryers
Optional or interim solution to implementing above ECM: Turn combustion blower motors off when dampers are closed (typical 5 places)	\$25,600	\$0	immediate	May be a best-case estimate—based on review of the manual control operation on 1 st dryer blower. Simple PLC code change to turn blower motor starter off required.
Alpha Motor Considerations

 Alpha chooses replacement motors of higher efficiency rather than rewiring failed motors

Alpha Belt Drives

- V-belt replacement
 - Standard
 - -Cogged
 - Synchronous
- Could save money by replacing standard v-belts

ECM - Replace V-Belt with Cog	gged or S	ynchronous Belt
Cost/kWh	0.065	Average kWh Costs
Operating Hrs/yr	6240	
V-Belt Efficiency	0.93	Typical Value over lifetime
Cogged-Belt Efficiency	0.95	Typical Value over lifetime
Synchronous Belt Efficiency	0.98	Typical Value over lifetime
Total Motor HP	1475	Total HP from Both Sites
Number of Fans	16	
Motor Efficiency	0.95	Percent
Motor Power Usage	1158	kW
Motor Diversity	100%	% of time Motor is running
Load Diversity	75%	Average Load
Net Hours Base Loaded	4680	
Power Savings Cogged Belt	24.4	kW
Power Savings Synchronous Belt	59.1	kW
Yearly Energy Use with V-belt	5,420,672	kWh
Energy Savings Cogged Belt	114,119	kWh
Energy Savings Synchronous Belt	276,565	kWh
Estimated Yearly Savings Cogged Belt	\$ 7,418	
Estimated Yearly Savings Synchronous Belt	\$ 17,977	nnu ele del fuere energia del
Estimated Cost/Cogged Belt	\$ 500	Site & App specific
Total Estimated Cost/Cogged Belts	\$ 8,000	\leftarrow
Estimated Cost/Synchronous Belt and Sprockets	\$ 1,000	Site & App specific
Total Estimated Cost/Synchronous Belts & Sprockets	\$ 16,000	
Estimated Payback Cogged Belt	12.94	Months
Estimated Payback Synchronous Belt	11	Months

Alpha Lighting

• Existing Metal Halide - ~460W per fixture

Fixture & lamp #	Cost of Fixture pl 20% labo	% of energy us 460W Metal r Halide	Payback 24/7	Payback 24/5	Payback 12/7	Mean Iumens	
T5, 2-lamp	\$ 330	.0 23%	1.6	2.3	3.3	9K-10K	
T5, 3-lamp	\$ 408	.0 35%	2.4	3.4	4.8	13K-15K	
T5, 4-lamp	\$ 618	.0 47%	4.4	6.2	8.9	18K-20K	
T5, 6-lamp	\$ 480	.0 78%	8.4	11.8	16.9	28K-30K	
T8, 2-lamp	\$ 144	.0 12%	0.6	0.9	1.3	5.1K-6.2K	N N
T8, 3-lamp	\$ 156	.0 18%	0.7	1.0	1.5	7.7K-9.3K	
T8, 4-lamp	\$ 240	.0 25%	1.2	1.7	2.4	10.3K-12.4K	
T8, 6-lamp	\$ 336	.0 42%	2.2	3.1	4.4	15K-18.6K	
Metal Halide 460W		na	na	na	na	29K	←∕

Based on \$0.065/kWh

EPRI Power Quality and Energy Efficiency Presentation

Alpha Lighting

- Simple payback averages
 3.2 years
 - -1.7 to 7 years
 - LED replacements based on \$800 per fixture
 - Price is decreasing

ЕСМ	Savings/yr	Cost	Simple Payback
Compressed air shop 1: replace six 460W metal halide fixtures with T8, 6-lamp units	\$912	\$2,016	2.2 years
Compressed air shop 2: replace five 250W metal halide fixtures with T8, 3- lamp units	\$473	\$780	1.7 years
Compressed air shop outside lighting: Replace 14 outside 458W metal halide fixtures with LED fixtures	\$1,602	\$11,200	6.99 years
Warehouse 2: replace six 250W metal halide fixtures with T8, 3-lamp units	\$936	\$567	1.7 years
Waste Oil Storage Building: replace four 250W metal halide fixtures with T8, 3- lamp units	\$378	\$624	1.7 years
Maintenance building: replace eighteen 460W metal halide fixtures with T8, 6-lamp units	\$2,737	\$6,048	2.2 years
Maintenance building: replace six 460W metal halide fixtures with LED	\$686	\$4,800	6.99 years
Crusher building: replace six 460W metal halide fixtures with T8, 6-lamp units	\$912	\$2,016	2.2 years

Beta Company

- Manufactures cleaning equipment
 - Brooms, mops, etc.
- Identified ~\$89,000 per year in energy cost savings
- Costs totaled around \$138,000
- Simple payback averaged
 1.6 years
 - Ranged from immediate to 11.5 years

ECM	Savings/yr	Cost	Simple Payback	
Delayed Machine by 2 hours on Sundays	\$3,016	\$0	Immediate	Operational procedures should be reviewed.
Turn off Injection Molding Conveyors when not in use	\$1,844	\$9,200	4.88 years	Use simple interlocking with machine run contactor. Utility incentives may lower payback.
Follow Heater Shutdown Procedures	\$43,602	\$0	Immediate	The plant load is 2MW to 2.5MW for 12 hours between shifts. More thorough machine shutdown between shifts could lead to significant savings.
Insulate Heater Barrels on Machines	\$21,149	\$38,064	1.8 years	EPRI estimates are more conservative than blanket supplier estimate.
Install additional efficient lighting for (163) T8 fixtures	\$1,423	\$16,300	11.5 years	Utility incentive not included in payback
Install additional efficient lighting for (95) T12 fixtures	\$2,352	\$9,500	4 years	Utility incentive not included in payback
Replace 21 Metal Halide Fixtures with 6 Lamp T-5s	\$878	\$5,280	6 years	Utility incentive not included in payback
Replace remaining Outdoor Metal Halides with LEDs	\$6,724	\$60,000	9 years	Utility incentive not included in payback
Consider Lowering Compressed Air Pressure by 10 PSIG	\$3,571	\$0	Immediate	Every 2 psi equates to a 1% decrease in energy costs.
Utilize mechanical spring or stop instead of compressed air to hold open boiler damper	\$4,500	\$0	Immediate	Inappropriate use of compressed air.
Utilize MotorMaster+ and MotorMaster+ International to purchase replacement motors	\$0	\$0	Immediate	See examples in report regarding potential savings for select motor types.

Beta Company Energy Profile – 2 year data

- Weekdays resembled "a." and "d." below
- Weekends ("b." and "c.") may fall to 500 kW but may remain at or above 1,000 kW
- At end of profile period, energy use on weekends fell to well-below 500 kW

May have realized energy being wasted

EPRI Power Quality and Energy Efficiency Presentation

Beta Extrusion Processes

- Do extruder heater barrels continue to heat without production?
 - Require 2-hour warm-up
 - Can this be delayed?
 - ~\$3,000 savings per year possible with no capital costs

ECM - Delayed Load Start Up					
Cost/kWh	0.058	Average kWh Costs			
Cold Start-up Occurances/Year	52				
Delayed Load Startup	2	Hours			
Delayed Startup Load Amount	500	kW			
Estimated kWH Savings	52000				
Estimated Yearly Savings	\$ 3,016				
EstimatedPayback	Immediate				

259

Beta Extrusion Process Conveyors

- Some conveyors appeared to run whether or not production also occurred
- Install interlock or implement effective procedure modification
 - Procedure payback immediate
 - Interlock payback
 ~59 months
 - Utility incentives possible

ECM - Turn off Motors When not in Use						
Cost/kWh	0.058	Average kWh Costs				
Operating Hrs/yr	6240					
Motor Size	0.33	Typical HP				
Motor Efficiency	0.82	For small motors, low efficiency				
Motor Power Usage	0.40	kW				
Motor Diversity	100%	% of time Motor is on Normally				
Load Diversity	75%	% of time at or near full load				
Net Hours Base Loaded	4680					
Est. Percent of Time Left On when not in use	15%	This is a guess that would need to be verified.				
Estimated Hour Reduction if Turned Off	702					
kWh/yr saved	283					
Number of Motors	115	Based on average of 2.5 conveyor motors per machine				
Total kWh/yr saved	32,489					
Estimated Yearly Savings	\$ 1,884					
		Estimated Cost to implement per machine, simple				
Estimated cost	\$ 200	contact interlocking				
Number of Machines	46	Injection Molding Machine Count				
Total Estimated Cost	\$ 9,200					
Utility Incentives	\$ -	Note if applicable				
Net Estimated Cost	\$ 9,200	Total cost minus any incentives				
Estimated Dauback	4.88	Years				
EstimatedPayback	59	Months				

Beta Extruder Barrels

- Two-hour warm-up, often left idle.
 - Not insulated
- If turned off during idle periods
 - \$43,602 potential savings

EPRI Power Quality and Energy Efficiency Presentation © 2012 Electric Power Research Institute, Inc. All rights reserved.

Lew . Heu	term . neuters off in the state (Non insulated neuter burrels)							
Cost/kWH	\$ 0.058							
				Estimated	Total kWh/Yr			
			Estimated KW	Total kW	Savings if			
		hours/Year in	Uninsulated	Used in	Heaters Turned	Estimated	d yearly	
Machine	No. Units	Idle State	Per Machine	Idle	Off	Savir	ngs	
EC55	2	3120	1	2.0	6,240	\$	361.92	
EC65n	1	3120	1	1.0	3,120	\$	180.96	
EC110	2	3120	1.5	3.0	9,360	\$	542.88	
EC180	2	3120	2	4.0	12,480	\$	723.84	
EC200 SX	3	3120	2	6.0	18,720	\$	1,085.76	
Ec240n	1	3120	2.5	2.5	7,800	\$	452.40	
EC310N	6	3120	3	18.0	56,160	\$	3,257.28	
EC500	2	3120	7.65	15.3	47,736	\$	2,768.69	
EG500 NII	6	3120	7.65	45.9	143,208	\$	8,306.06	
ISGS 500	5	3120	7.65	38.3	119,340	\$	6,921.72	
EC610	5	3120	7.65	38.3	119,340	\$	6,921.72	
Isf 610								
sii	1	3120	7.65	7.7	23,868	\$	1,384.34	
ISG610	4	3120	7.65	30.6	95,472	\$	5,537.38	
EC720 NII	1	3120	8.5	8.5	26,520	\$	1,538.16	
Main								
Extruders	2	3120	10	20.0	62,400	\$	3,619.20	
					Totals	\$	43,602	

Insulate Extruder Barrels

- Estimated energy cost with insulated extruder barrels
 ECM : Heaters off in Idle State (Insulated Heater Barrels)
 - \$10,574
- Estimated savings per year
 - -~\$30,000

Cost/kWH	\$ 0.058						
			Estimated KW		Total kWh/Yr		
		hours/Year	insulated Per	Estimated Total	Savings if Heaters		
Machine	No. Units	in Idle State	Machine	kW Used in Idle	Turned Off	Estimated yearly	/ Savings
EC55	2	3120	0.7	1.3	4,118	\$	238.87
EC65n	1	3120	0.7	0.7	2,059	\$	119.43
EC110	2	3120	1.0	2.0	6,178	\$	358.30
EC180	2	3120	0.8	1.6	4,992	\$	289.54
EC200 SX	3	3120	0.8	2.4	7,488	\$	434.30
Ec240n	1	3120	1.0	1.0	3,120	\$	180.96
EC310N	6	3120	0.9	5.4	16,848	\$	977.18
EC500	2	3120	1.6	3.2	10,025	\$	581.42
EG500 NII	6	3120	1.6	9.6	30,074	\$	1,744.27
ISGS 500	5	3120	1.6	8.0	25,061	\$	1,453.56
EC610	5	3120	1.6	8.0	25,061	\$	1,453.56
Isf 610							
sii	1	3120	1.6	1.6	5,012	\$	290.71
ISG610	4	3120	1.6	6.4	20,049	\$	1,162.85
EC720 NII	1	3120	2.1	2.1	6,630	\$	384.54
Main							
Extruders	2	3120	2.5	5.0	15,600	\$	904.80
					Totals	\$	10,574

Beta Lighting

- Company replaced many of its metal halide fixtures (460W) before audit
 - 420 T5 6-lamp fixtures at 320W per fixture
 - Small difference in watts; therefore small savings possible
 - Calculated to be 270,000 kWh
 - Utility reported 240,000 kWh saved, or \$12,000 at \$0.056 per kWh
 - Additional metal halide remained with plans to replace them
 - Outdoor metal halide fixtures replaced with LED fixtures:

1										5 8 . 8
							kWH		Contraction of the second	-
	Technology	Cost/Fixture	Total Fixtures	kW/Fixture	Hrs/Year	KW Total	Total	Cost/kWH	Cost/Year	
	Metal									
	Halide	\$216	1	0.458	4380	0.458	2006.04	0.05	\$100.30	
	LED	\$800	1	0.056	4380	0.056	245.28	0.05	\$ 12.26	
								Savings	\$ 88.04	
								Costs	\$800	
								Payback	9.04	Years

Beta Compressors

- Compressed air is costly and between 10% and 15% efficient
- Rule of Thumb for cost: increases around 1% for every 2 pounds per square inch at 100 psi
- Should not be used to hold open a flue damper
 - Estimated cost at \$4,500 per year
- Leak study recently done
 - EPRI audit did not identify any leaks

EPRI Power Quality and	Energy Efficiency Presentation	

	102	1%	Ş	53,829
	104	2%	\$	54,373
	106	3%	\$	54,927
t 🗡	108	4%	\$	55,493
	110	5%	\$	56,071
ses	112	6%	\$	56,660
per	114	7%	\$	57,262
	116	8%	\$	57,877
	118	9%	\$	58,505
n	120	10%	\$	59,147
	Based on 8760 ho	ours of operation at 0.07	7343 \$/	kWh and 90% efficiency

Header Pressure Energy Cost Increase

100

Cost/Year

53,296

\$

0%

Beta Compressor Air Pressure

- 113 psi at time of audit
- At 103 psi, savings could be realized
 - no material cost
 - Simply adjust pressure
- \$3,570 cost savings/yr

ECM Lower Compress	ed Air Pres	sure
Cost/kWh	0.058	Average kWh Costs
Operating Hrs/yr	6240	
Air Compressor Size	250	Total HP
Motor Efficiency	0.945	Percent
Compressor Power Usage	197	kW
Compressor Diversity	100%	% of time compressor is on
Load Diversity	100%	% of time at or near full load
Net Hours Base Loaded	6240	
Current Header Pressure	113	psig
Reduced Air Pressure	103	psig
Reduction Factor	5.0%	
Estimated Electricity Consumption Decrease	9.9	kW
kWh/yr saved	61,575	
Estimated Yearly Savings	\$ 3,571	
Estimated Payback	Immediate	

Extruders: Hydraulic vs. Electric

- 8 injection molding machines were hydraulic—will be replaced
- Hydraulic extruders may be slower but capable of greater force
 - Good for metal casting
 - May not be necessary for plastic extrusion
- Electric-powered machines may reduce energy costs by 30% to 60% compared to hydraulic
 - May process plastic molds faster

Beta Company Waste Heat Recovery

- Two IR Furnaces and one natural gas boiler
 - Waste heat from ovens: 1,272,676 BTU per hour
 - Could be used to preheat boiler water

EPRI Power Quality and Energy Efficiency Presentation

Beta Company Waste Heat Recovery

- Three separate heat exchangers
 - Two ovens
 - One boiler

Ξ

EPRI Power Quality and Energy Efficiency Presentation

Beta Company Waste Heat Recovery

- One large heat exchanger
- Significant ductwork

Mastering Motors

- EISA 2007 standards for new motors
 - mandatory from December 2010
 - all general purpose motors—NEMA Premium Efficiency, 85.6 to 96.2%—
 - larger motors from 201HP up to 500HP—96.2%—as well as Type II motors
- EPRI team identified 1HP motors with efficiency rating of 77%
 - Replace with 84.6% effic. motor, payback in 4 months*
- Replace 10HP 87.5% effic. with 91.6%
 - Payback in ~2.5 years*
- Replace 250HP 94.5% effic. with 95.8%
 - Payback in ~6.4 years*

*Using DOE's ITP Motormaster + software

Alternate Heating Method

- Process heat for metal components for products came from infrared ovens
- Heat could come from Magnetic Induction instead
 - Heats quickly to required temperature
 - Only heats material (steel)

ISO 50001 and Superior Energy Performance

Mark Stephens, PE, CEM

EPRI | Senior Project Manager Industrial PQ & Energy Efficiency PQ and SD 2012 June 7, 2012

Related Standards Documents

- ISO 50001 Energy Management Systems Requirements with Guidance for use
- ANSI 50021 Additional Requirements for Energy Management Systems
- Superior Energy Performance Certification Protocol

EPRI Power Quality and Energy Efficiency Presentation

ISO 50001 — What is it?

ISO 50001:2011, Energy management systems – Requirements with guidance for use, is a voluntary International Standard developed by ISO (International Organization for Standardization).

ISO 50001 gives organizations the requirements for energy management systems (EnMS).

ISO 50001 provides benefits for organizations large and small, in both public and private sectors, in manufacturing and services, in all regions of the world. ISO 50001 will establish a framework for industrial plants; commercial, institutional, and governmental facilities; and entire organizations to manage energy. Targeting broad applicability across national economic sectors, it is estimated that the standard could influence up to 60% of the world's energy use.*

What is Superior Energy Performance (SEP)

- Superior Energy Performance^{cm} is a certification program that provides industrial facilities with a roadmap for achieving continual improvement in energy efficiency while maintaining competitiveness.
- The program will provide a transparent, globally accepted system for verifying energy performance improvements and management practices.
- A central element of Superior Energy Performance is implementation of the global energy management standard, <u>ISO 50001</u>, with additional requirements to achieve and document energy performance improvements

		Level				
Pathway	Requirements	Silver	Gold	Platinum		
Energy	Minimum % improvement	5%	10%	15%		
Performance	Maximum years to achieve*	3	3	3		
Mature	Minimum % Improvement	15%	15%	15%		
Energy	Maximum years to achieve*	10	10	10		
	Minimum Best Practice Scorecard points	35	61	81		

Ref: http://www.superiorenergyperformance.net/

ISO 50001 — Why is it important?

Energy is critical to organizational operations and can be a major cost to organizations, whatever their activities. An idea can be gained by considering the use of energy through the supply chain of a business, from raw materials through to recycling.

In addition to the economic costs of energy to an organization, energy can impose environmental and societal costs by depleting resources and contributing to problems such as climate change.

The development and deployment of technologies for new energy sources and renewable sources can take time.

Individual organizations cannot control energy prices, government policies or the global economy, but they can improve the way they manage energy in the here and now. Improved energy performance can provide rapid benefits for an organization by maximizing the use of its energy sources and energy-related assets, thus reducing both energy cost and consumption. The organization will also make positive contributions toward reducing depletion of energy resources and mitigating worldwide effects of energy use, such as global warming.

ISO 50001 is based on the management system model that is already understood and implemented by organizations worldwide. It can make a positive difference for organizations of all types in the very near future, while supporting longer term efforts for improved energy technologies.

ISO 50001 – What will it do?

ISO 50001 will provide public and private sector organizations with management strategies to increase energy efficiency, reduce costs and improve energy performance.

The standard is intended to provide organizations with a recognized framework for integrating energy performance into their management practices. Multinational organizations will have access to a single, harmonized standard for implementation across the organization with a logical and consistent methodology for identifying and implementing improvements.

The standard is intended to accomplish the following:

- Assist organizations in making better use of their existing energyconsuming assets
- Create transparency and facilitate communication on the management of energy resources
- Promote energy management best practices and reinforce good energy management behaviours
- Assist facilities in evaluating and prioritizing the implementation of new energy-efficient technologies
- Provide a framework for promoting energy efficiency throughout the supply chain
- Facilitate energy management improvements for greenhouse gas emission reduction projects
- Allow integration with other organizational management systems such as environmental, and health and safety.

ISO 50001 – How does it work?

ISO 50001 is based on the ISO management system model familiar to more than a million organizations worldwide who implement standards such as ISO 9001 (quality management), ISO 14001 (environmental management), ISO 22000 (food safety), ISO/IEC 27001 (information security).

In particular, ISO 50001 follows the Plan-Do-Check-Act process for continual improvement of the energy management system.

These characteristics enable organizations to integrate energy management now with their overall efforts to improve quality, environmental management and other challenges addressed by their management systems.

ISO 50001 provides a framework of requirements enabling organizations to:

- Develop a policy for more efficient use of energy
- Fix targets and objectives to meet the policy
- Use data to better understand and make decisions concerning energy use and consumption
- Measure the results
- Review the effectiveness of the policy
- Continually improve energy management.

ISO 50001 can be implemented individually or integrated with other management system standards.

ISO 50001 — Who can it benefit?

Like all ISO management system standards, ISO 50001 has been designed for implementation by any organization, whatever its size or activities, whether in public or private sectors, regardless of its geographical location.

ISO 50001 does not fix targets for improving energy performance. This is up to the user organization, or to regulatory authorities. This means than any organization, regardless of its current mastery of energy management, can implement ISO 50001 to establish a baseline and then improve on this at a rhythm appropriate to its context and capacities.

ISO 50001 — To certify or not?

Like all ISO management system standards, ISO 50001 can be implemented solely for the internal and external benefits it provides the user organizations and the latter's stakeholders and customers. Certification by an independent auditor of conformity of the user's energy management system to ISO 50001 is not a requirement of the standard itself. To certify or not is a decision to be taken by the ISO 50001 user, unless imposed by regulation.

Alternatives to independent (third party) certification are to invite the organization's customers to verify its implementation of ISO 50001 in conformity with the standard (second party verification), or to self-declare its conformity.

ISO 50001 — What's in the standard?

The content of ISO 50001 is structured as follows:

Foreword

Introduction (extract from ISO 50001)

"The purpose of this International Standard is to enable organizations to establish the systems and processes necessary to improve energy performance, including energy efficiency, use, and consumption. Implementation of this standard is intended to lead to reductions in greenhouse gas emissions, energy cost, and other related environmental impacts, through systematic management of energy. This International Standard is applicable to all types and sizes of organizations irrespective of geographical, cultural or social conditions. Successful implementation depends on commitment from all levels and functions of the organization, and especially from top management.

"This International Standard specifies requirements of an energy management system (EnMS) for an organization to develop and implement an energy policy, establish objectives, targets, and action plans, which take into account legal requirements and information related to significant energy use. An EnMS enables an organization to achieve its policy commitments, take action as needed to improve its energy performance and demonstrate the conformity of the system to the requirements of this International Standard. Application of this International Standard can be tailored to fit the requirements of an organization — including the complexity of the system, degree of documentation, and resources — and applies to the activities under the control of the organization.

"This International Standard is based on the Plan-Do-Check-Act continual improvement framework and incorporates energy management into everyday organizational practices.

ISO 50001 – Plan, Do, Check, Act

- Plan: conduct the energy review and establish the baseline, energy performance indicators (EnPIs), objectives, targets and action plans necessary to deliver results in accordance with opportunities to improve energy performance and the organization's energy policy.
- Do: implement the energy management action plans.
- Check: monitor and measure processes and the key characteristics of its operations that determine energy performance against the energy policy and objectives and report the results.
- Act: take actions to continually improve energy performance and the EnMS.

Ref: DOE ISO 50001 Brochure: http://www1.eere.energy.gov/energymanagement/index.html

E-guide Offers Guidance to Standard Implementation

DOE eGuide for ISO 50001

■Provide eGuide Feedback ■eGuide Sitemap ■eGuide Downloads

What is the DOE eGuide for ISO 50001 is a toolkit designed to help
organizations implement an energy
management system through an
organized step by step process.
It includes forms, checklists,
templates, examples, and guidance
to assist the Energy Champion and
Energy Team throughout the
implementation process.How to use the
COULDEDImage: How to use the
comparison of the process of the

The seven major steps of the eGuide start with the decision to utilize an EnMS. They proceed through implementation and system maintenance using a proven continual improvement process and the International Standard for Energy Management Systems, ISO 50001. If this is your first time using the eGuide, you can start with How to use the eGuide.

New to energy management? Check out the eGuide Lite.

Receive a brief, simple evaluation of your current EnMS.

Ref: DOE E-Guide for ISO 50001: https://save-energy-now.org/EM/SPM/Pages/Home.aspx

EPRI Power Quality and Energy Efficiency Presentation

Step 1 – Getting Started with ISO 50001

Step 1.1 Make the business case

- Step 1.1.1 Identify key internal influencers
- Step 1.1.2 Understand your business drivers
- Step 1.1.3 Prepare sales pitch
- Step 1.1.4 Brief top management

Step 1.2 Secure top management commitment Step 1.2.1 Establish the scope and boundaries Step 1.2.2 Appoint a management representative Step 1.2.3 Assign the members of the energy team Step 1.2.4 Define the energy policy Step 1.2.5 Create organizational awareness Step 1.2.6 Ensure continual awareness

- Step 1.3 Establish the structure for EnMS implementation
 - Step 1.3.1 Set the timeframe for implementation Step 1.3.2 Develop the implementation plan Step 1.3.3 Establish communication channels Step 1.3.4 Celebrate success often

Ref: DOE E-Guide for ISO 50001: https://save-energy-now.org/EM/SPM/Pages/Home.aspx

EPRI Power Quality and Energy Efficiency Presentation

Step 2 - Profile Your Energy Situation

Step 2.1 Identify, evaluate and track legal and other requirements

- Step 2.1.1 Identify and access legal requirements
- Step 2.1.2 Identify and access other requirements
- Step 2.1.3 Establish a process for evaluating and updating requirements
- Step 2.1.4 Plan for evaluating compliance with legal and other requirements

Step 2.2 Acquire, analyze and track energy data

- Step 2.2.1 Identify data needs
- Step 2.2.2 Determine availability of data
- Step 2.2.3 Formulate a process for acquiring and recording data
- Step 2.2.4 Investigate tools for analyzing and tracking energy data
- Step 2.2.5 Choose and implement an energy data management tool

Step 2.3 Determine significant energy uses

- Step 2.3.1 Prepare a list of your energy systems
- Step 2.3.2 Develop an energy balance
- Step 2.3.3 Determine criteria for significance
- Step 2.3.4 Record significant energy uses and the method used
- Step 2.3.5 Analyze and track significant energy uses

Ref: DOE E-Guide for ISO 50001: https://save-energy-now.org/EM/SPM/Pages/Home.aspx

EPRI Power Quality and Energy Efficiency Presentation

Step 2 - Profile Your Energy Situation

- Step 2.4 Identify energy opportunities Step 2.4.1 Use energy assessments Step 2.4.2 Utilize other methods
- Step 2.5 Prioritize energy opportunities
 - Step 2.5.1 Get the right people together
 - Step 2.5.2 Review relevant organizational information
 - Step 2.5.3 Determine criteria
 - Step 2.5.4 Develop tools or techniques for applying criteria
 - Step 2.5.5 Apply criteria to prioritize opportunities
- Step 2.6 Establish a baseline and determine energy performance indicators (EnPIs)
 - Step 2.6.1 Get stakeholder requirements for measuring performance
 - Step 2.6.2 Establish a baseline
 - Step 2.6.3 Develop a list of possible EnPIs
 - Step 2.6.4 Determine factors that affect EnPIs
 - Step 2.6.5 Select and test EnPIs
 - Step 2.6.6 Analyze EnPIs to determine performance

Ref: DOE E-Guide for ISO 50001: https://save-energy-now.org/EM/SPM/Pages/Home.aspx

EPRI Power Quality and Energy Efficiency Presentation

 $\ensuremath{\textcircled{\sc 0}}$ 2012 Electric Power Research Institute, Inc. All rights reserved.

Example Energy Balance (Eguide 2.3.2)

			Enter	prise Annu	age				
			Sourc	Source Usage				Units	
			Natur	Natural gas				MMBtu	1
Stop 2 2 2 2 Example Energy Palance			Electr	Electricity 2,1			19,800	kWh	
Step 2.5.2-2 Example Energy Balance			+ Comb	Combined Btu		15,003		MMBtu	1 — — — — — — — — — — — — — — — — — — —
chergy balance. Sina	in roou rioces	sing Fiai							
Description	Size	Units	Oper hr	Load	kWh		ммв	tu	% total
Electrical Usage									
VSD screw	125	HP	8760	0.5	4	39,177		1,498	10.0%
Recip backup	50	HP	500	0.7		14,506		49	0.3%
Chiller	100	tons	8760	0.5	3.	50,400		1,196	8.0%
Air handlers	20	HP	8760	0.75	1	08,916		372	2.5%
Cooling tower	15	HP	8760	0.45		49,012		167	1.1%
Refrigeration	3	tons	8760	0.5	:	10,512		36	0.2%
Process pumps	50	HP	6600	0.6	1	64,120		560	3.7%
Votator	20	HP	3300	0.4	:	21,883		75	0.5%
Homogenizer	40	HP	3300	0.4	4	43,765		149	1.0%
Plant lights	69	kW	6600	1	4	55,400		1,554	10.4%
Process motors	50	HP	6600	0.4	1	09,413		373	2.5%
Misc electrical use					3	52,695		1,203	8.0%
Natural Gas Usage									
Boiler	25	bHP	6600	0.35				6,909	46.1%
Water heater	300000	Btuh	8760	0.2				526	3.5%
Misc gas use								335	2.2%
Plant total								15,003	100.0%

Ref: DOE E-Guide for ISO 50001:

https://save-energy-now.org/EM/SPM/Pages/Home.aspx

EPRI Power Quality and Energy Efficiency Presentation

Example Energy Balance (Eguide 2.3.2)

Step 2.3.2-2 Example Energy Balance

EPRI Power Quality and Energy Efficiency Presentation

Continual improvement

Management review

Energy policy

Energy pla

Implementat and operati

Checking

Monitoring easurement and analysis

Example Cost Factor for Significant Energy Use Selection

Description	kW	%	Annual \$
Melter	9,634	53.4%	\$2,959,879
Hi Press Air Compressor	2,330	12.9%	\$715,852
Med Press Air Compressor	780	4.3%	\$239,641
Med Freq.	545	3.0%	\$167,442
Forming Fans	494	2.7%	\$151,773
Oven Scrubber	450	2.5%	\$138,255
Scrubber	414	2.3%	\$127,194
Cooling Water	407	2.3%	\$125,044
Filtered Air	373	0.0%	\$114,598
Fans	336	1.9%	\$103,230
Med Freq	320	1.8%	\$98,314
East Scrubber	255	1.4%	\$78,344
Forming Fans	150	0.8%	\$46,085
F. Fans West 4,5	122	0.7%	\$37,482
Line Drive	69	0.4%	\$21,199
Other loads and misc.	1,241	6.9%	\$381,276

100% Load Factor kW

18,042 100.0%

\$5,543,090

Ref: DOE E-Guide for ISO 50001:

https://save-energy-now.org/EM/SPM/Pages/Home.aspx

EPRI Power Quality and Energy Efficiency Presentation

Example EnPI Tracking (Eguide Step 2.3.5-2)

STEP 2.3.5-2 Example

EnPI Tracking

Induction

Furnace

Tracking of EnPI for melt furnace

personnel on 2 shifts

Daily data collected-shift steel

production and furnace power input

Date		Shift 1			Shift 2					
			1st shift			2nd shift				
	Tons		EnPI-	Tons		EnPI-				
	melted	kWh in	kWh/ton	melted	kWh in	kWh/ton				
15-Sep-10	624	255,840	410.00	610.00	245,758	402.88				
16-Sep-10	624	255,712	409.80	610.00	245,630	402.67				
17-Sep-10	624	255,559	409.55	610.00	245,483	402.43				
18-Sep-10	624	255,533	409.51	610.00	245,451	402.38				
19-Sep-10	624	255,508	409.47	610.00	245,426	402.34				
20-Sep-10	624	255,278	409.10	610.00	245,196	401.96				
21-Sep-10	624	255,175	408.94	610.00	245,048	401.72				
22-Sep-10	624	255,150	408.89	610.00	245,068	401.75				
23-Sep-10	624	254,767	408.28	610.00	244,685	401.12				
24-Sep-10	624	254,640	408.08	610.00	244,558	400.91				
25-Sep-10	624	253,876	406.85	610.00	244,411	400.67				
26-Sep-10	624	253,876	406.85	610.00	244,264	400.43				
27-Sep-10	624	254,640	408.08	610.00	244,118	400.19				
28-Sep-10	624	254,513	407.87	610.00	243,630	399.39				
29-Sep-10	624	254,004	407.06	610.00	243,922	399.87				
30-Sep-10	624	253,877	406.85	610.00	243,775	399.63				
01-Oct-10	624	253,115	405.63	610.00	243,033	398.41				
02-Oct-10	624	252,862	405.23	610.00	242,780	398.00				
03-Oct-10	624	252,761	405.07	610.00	242,634	397.76				
04-Oct-10	624	252,533	404.70	610.00	242,451	397.46				
05-Oct-10	624	252,028	403.89	610.00	242,306	397.22				

Ref: DOE E-Guide for ISO 50001:

https://save-energy-now.org/EM/SPM/Pages/Home.aspx

Example EnPI Tracking (Eguide Step 2.3.5-2)

Induction Furnace Energy Performance Indicator

EPRI Power Quality and Energy Efficiency Presentation

Prioritizing Energy Opportunities (Eguide Step 2.5.4)

Step 2.5.4 Example Criteria and Ratings for Prioritizing Energy Opportunities (Weighted)

This table presents examples of criteria for prioritizing energy opportunities (also known as "energy projects"). Note that this example lists each criteria, uses a 4-point numerical rating scale, and defines each point on the rating scale for each criterion. A weight is also defined for each criterion.

	CRITERIA		RATING SCALE a	nd DESCRIPTION			
		1	2	2	4	Weight	
		-	2	5	-	(W)	
	1) Anticipated Annual Energy Cost Savings	Less than \$10,000/year	\$10,000- \$25,000/year	\$25,000- \$100,000/year	Greater than \$100,000/year	3	
ample	 Expected time required for implementation 	Greater than 12 months	6-12 months	Less than 6 months	Immediately	2	ample
Ĕ	3) Simple Payback	Greater than 36	13-36 months	6-12 months	Less than 6 months	4	EX
	4) Environmental, Health or Safety Impact	Increased negative impact on environmental, health, and/or safety conditions	Minimal negative impact on environmental, health, and/or safety conditions	No change to environmental, health, and/or safety conditions	Improved environmental, health, and/or safety conditions	1	

Step 2.5.4 Example Worksheet for Prioritizing Energy Opportunities (Weighted)

This example includes a brief description of the opportunity (or project) in the left column. The weight for each criteria has been carried over from the table above and each opportunity has been rated against each of the criteria. The opportunity score is automatically calculated by formulas in the table. The opportunity score = [(criteria 1 rating X weight)(criteria 2 rating X weight)(criteria 3 rating X weight)(criteria 4 rating X weight)]. In this example, higher scores indicate higher priority.

mple	Opportunity	Criteria #1 Cost Savings	Criteria #2 Time for Implementation	Criteria #3 Simple Payback	Criteria #4 EHS Impact	Opportunity Score = Opportunity Rating x Weight	-
	WEIGHT (from above table)	3	2	4	1		
Exa	Insulate steam pipes	3	2	1	4	576	
	Replace fluorescent T-12 lighting with T-8 lighting	3	2	2	1	288	
	Repair compressed air leaks	3	4	3	2	1728	

Ref: DOE E-Guide for ISO 50001:

https://save-energy-now.org/EM/SPM/Pages/Home.aspx

Using Regression to Predict Develop Energy Performance Model (Eguide Step 2.6.5)

STEP 2.6.5	Example R	egression wi	th Other Varia	blesDays	Per Month /	Added to Mo	odel		
	Number	of Data Po of X's	oints	1/					
		Y	X1	X2	X3	X4		FI · · · · ·	
		Electricity		Dave nor				Electricity	
	Period	(kWh)	Production	month			Model	Model	
	1	582,888	2,919,395	31			588,862	0.99	ľ
	2	538,692	2,905,952	28			545,879	0.99	
	3	613,903	3,367,991	31			601,081	1.02	
	4	561,483	2,982,647	30			576,379	0.97	
	5	579,790	2,616,006	31			580,599	1.00	
	6	569,556	2,438,080	30			561,547	1.01	
	7	563,476	2,137,521	31			567,566	0.99	
	8	562,696	2,470,007	31			576,622	0.98	
	9	552,665	1,805,674	30			544,322	1.02	
	10	576,319	2,190,076	31			568,998	1.01	
	11	557,430	2,099,662	30			552,329	1.01	
	12	537,889	2,167,349	31			568,379	0.95	
	13	582,888	2,944,682	31			589,551	0.99	
	14	538,692	2,472,728	28			534,079	1.01	
	15	613,903	2,601,276	31			580,198	1.06	
	16	561,483	2,393,034	30			560,320	1.00	
	17	579,790	2,477,697	31			576,832	1.01	

	Y_1	X_1	X_2	X_3	X_4	
m		0.03	14205.92	14205.92		
b		68963				
se		0.01	3697.51	3697.51		
r^2		0.6				
df		14.0				
T-stat		2.9	3.8	3.8		
P-value		0.0107	0.0018	0.0018		
	y =	(0.02724)*X1	4205.91967	+ (0)*X3	+ (0)*X4	+ 68963
		X1	X2	X3	X4]
	Electricity		Days per			
	(kWh)	Production	month	0	0	
	P-Values	0.01073	0.00180			
		0.00				

r^2	0.62			
m	0.03	14205.92	0.00	0.00
b	68963			

Regression Model

y = (0.02724)*X1+ (1	y = (0.02724)*X1+ (14205.91967)*X2+ (0)*X3+ (0)*X4+ 68963								
Round coefficients (m)	5								
Round constant (b)	0								

Ref: DOE E-Guide for ISO 50001: https://save-energy-now.org/EM/SPM/Pages/Home.aspx

Step 3 - Develop Objectives, Targets and Action Plans

Step 3.1 Establish energy objectives and targets

- Step 3.1.1 Get the right people together
- Step 3.1.2 Provide appropriate inputs
- Step 3.1.3 Define and document objectives and targets
- Step 3.1.4 Obtain management approval
- Step 3.1.5 Communicate the energy objectives and targets

Step 3.2 Formulate energy management action plans

- Step 3.2.1 Select projects based on resources and other factors
- Step 3.2.2 List the actions needed
- Step 3.2.3 Develop the schedule
- Step 3.2.4 Assign roles and responsibilities
- Step 3.2.5 Document and regularly update the action plans

Ref: DOE E-Guide for ISO 50001: https://save-energy-now.org/EM/SPM/Pages/Home.aspx

EPRI Power Quality and Energy Efficiency Presentation

Step 4 Reality Check: Stop! Look! Can I Go?

Step 4.1 Review the status of your efforts

Step 4.2 Perform a sanity check on resources

Step 4.3 Identify accomplishments and lessons learned

Step 4.4 Conduct a management review

Step 4.5 Communicate across the organization

Ref: DOE E-Guide for ISO 50001: https://save-energy-now.org/EM/SPM/Pages/Home.aspx

EPRI Power Quality and Energy Efficiency Presentation

Step 5 - Manage Current State and Improvements

Step 5.1 Manage and control information

Step 5.2 Determine operational controls

Step 5.2.1 Determine and establish effective operating criteria

Step 5.2.2 Operate according to established controls

Step 5.2.3 Communicate operational controls

Step 5.3 Ensure competence of personnel

Step 5.3.1 Define competencies

- Step 5.3.2 Assess personnel against competencies
- Step 5.3.3 Develop plan to address training needs
- Step 5.4 Ensure awareness of personnel

Step 5.4.1 Define awareness requirements

- Step 5.4.2 Plan and implement training
- Step 5.5 Define purchasing specifications for energy supply
- Step 5.6 Incorporate energy considerations in procurement
- Step 5.7 Manage energy considerations in design
- Step 5.8 Communicate internally

Step 5.9 Decide on external communications

Ref: DOE E-Guide for ISO 50001: https://save-energy-now.org/EM/SPM/Pages/Home.aspx

EPRI Power Quality and Energy Efficiency Presentation

Step 6 - Check the System

Step 6.1 Monitor, measure and analyze key characteristics

Step 6.2 Calibrate monitoring and measuring equipment

Step 6.3 Evaluate legal and other compliance

Step 6.4 Plan and conduct internal audits

Step 6.5 Take action to correct and prevent nonconformities

Step 6.6 Check and use the evidence

Ref: DOE E-Guide for ISO 50001: https://save-energy-now.org/EM/SPM/Pages/Home.aspx

EPRI Power Quality and Energy Efficiency Presentation

Step 7 - Sustain and Improve the System

Ref: DOE E-Guide for ISO 50001: https://save-energy-now.org/EM/SPM/Pages/Home.aspx

EPRI Power Quality and Energy Efficiency Presentation

© 2012 Electric Power Research Institute, Inc. All rights reserved.

E

EnPI Tool Helps with M&V Efforts

EnPl Tool v3.02

Released 6/6/11

© 2011 Georgia Tech Research Corporation

Disclaimer

The EnPI Tool is being made available to assist companies with their evaluation of their energy performance improvement. The Georgia Tech Research Corporation (GTRC) and the Georgia Institute of Technology (GIT) Georgia Tech disclaim any and all promises, representation and warranties both expressed and implied with respect to the results generated using the EnPI Tool.

Note for SEP M&V Protocol Users: The EnPI tool is intended to assist companies in their efforts demonstrate energy performance improvement in compliance with the Superior Energy Performance Plant Measurement and Verification Protocol (SEP M&V Protocol). This tool is NOT intended to be a substitute for the end-user's thorough understanding of the SEP M&V Protocol, and use of this tool on its own does not represent conformance to SEP M&V Protocol.

EnPI Tool Step 1 – Energy Utilities

EnPI Tool v3.02, © 2011 Georgia Tech Research Corporation

	Units of Data	MMBtu Conversion	Generation / T&D
Utilities	Entered	Factor	Efficiency
Electricity	kWh	0.003412	33.3%
Natural Gas	MCF	1.03	100.0%
[None]	MMBtu	1	100.0%

EnPI Tool Step 2 – Data Entry

EnPI Tool v3.02, © 2011 Georgia Tech Research Corporation

	-					1000 Data I	Points Max		
			Utilities					Independen	nt Variables
	Date	Electricity (kWh)	Natural Gas (MCF)	[None] (MMBtu)	Production	Average Temp	HDD	CDD	Dry Tons
1	Jan-09	5,685,825	102,713		53,942	42	721	0	31,275
2	Feb-09	5,664,904	103,112		56,181	48	485	0	33,691
3	Mar-09	5,706,338	97,368		59,127	58	235	11	29,614
4	Apr-09	5,792,469	122,411		62,775	62	116	353	35,683
5	May-09	5,687,716	113,392		63,931	71	4	194	35,378
6	Jun-09	5,547,835	115,582		64,381	76	0	330	36,209
7	Jul-09	5,483,640	127,258		64,406	79	0	425	35,491
8	Aug-09	5,711,789	115,299		60,847	80	0	451	31,724
9	Sep-09	5,541,890	116,652		58,975	72	12	238	35,441
10	Oct-09	5,726,782	99,122		61,228	64	71	42	33,924
11	Nov-09	5,436,763	83,331		50,214	58	251	29	25,070
12	Dec-09	5,995,052	116,308		64,550	42	701	0	35,425
13	Jan-10	6,192,191	105,618		54,230	44	666	0	29,321
14	Feb-10	6,045,216	120,431		57,542	45	574	1	32,610
15	Mar-10	6,239,523	112,132		63,105	58	242	16	33,896
16	Apr-10	5,692,977	114,456		58,829	62	136	44	32,740
17	May-10	6,016,468	112,154		57,369	74	12	299	34,992
18	Jun-10	5,718,187	112,424		60,978	79	0	422	34,311
19	Jul-10	5,683,007	119,755		61,058	81	0	486	33,155
20	Aug-10	5,671,433	114,390		61,609	78	0	395	34,155
21	Sep-10	5,606,231	111,989		59,755	74	0	280	34,222
22	Oct-10	5,768,469	120,645		60,651	66	48	78	34,109
23	Nov-10	5,636,991	117,441		58,444	56	297	24	33,899
24	Dec-10	5,716,985	116,744		57,071	46	605	0	32,555
25	Jan-11	5,826,876	95,795		54,086	47	565	2	30,298
26	Feb-11	5,588,352	101,613		56,862	52	357	1	33,151
27	Mar-11	5,906,176	94,039		61,116	60	208	48	31,755
28	Apr-11	6,116,421	102,238		60,802	66	55	92	34,212
29	May-11	6,267,905	113,956		60,650	75	6	323	35,185
30	Jun-11	6,020,986	120,964		62,680	84	0	555	35,260

EnPl Tool Step 3 – Data Review

EnPl To	ol v3.02, © 201	1 Georgia Tec	h Research Co	rporation								
		Model Yea Model Yea	r First Row r Last Row	01/05/09 12/12/09	Set Range Show All Data				Model OK			
_		Y1	Y2	Y 3	X1	X2	X3	X4	X5	X6	X7	X8
	Date	Electricity (MMBtu)	Gas (MMBtu)	[None] (MMBtu)	Production	Average Temp	HDD	CDD	Dry Tons			
1	01/05/09	58,200	105,794	-	53,942	42	721	0	31,275			
2	02/05/09	57,986	106,205	-	56,181	48	485	0	33,691			
3	03/08/09	58,410	100,289	-	59,127	58	235	11	29,614			
4	04/08/09	59,292	126,083	-	62,775	62	116	353	35,683			
5	05/09/09	58,220	116,794	-	63,931	71	4	194	35,378			
6	06/09/09	56,788	119,049	-	64,381	76	0	330	36,209			
- 7	07/10/09	56,131	131,075	-	64,406	79	0	425	35,491			
8	08/10/09	58,466	118,758	-	60,847	80	0	451	31,724			
9	09/10/09	56,727	120,152	-	58,975	72	12	238	35,441			
10	10/11/09	58,619	102,096	-	61,228	64	71	42	33,924			
11	11/11/09	55,651	85,831	-	50,214	58	251	29	25,070			
12	12/12/09	61,365	119,797	-	64,550	42	701	0	35,425			

P-Values

	Production	Average Temp	HDD	CDD	Dry Tons			
Electricity (MMBtu)	0.21356	0.10216	0.11472	0.40805	0.32568	#VALUE!	#VALUE!	#VALUE!
 Natural Gas (MMBtu)	0.00170	0.14803	0.33103	0.00620	0.00058	#VALUE!	#VALUE!	#VALUE!
[None] (MMBtu)	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#VALUE!	#VALUE!	#VALUE!

R²

				R				
	Production	Average Temp	HDD	CDD	Dry Tons			
Electricity (MMBtu)	0.15	0.24	0.23	0.07	0.10	#VALUE!	#VALUE!	#VALUE!
Natural Gas (MMBtu)	0.64	0.20	0.09	0.54	0.71	#VALUE!	#VALUE!	#VALUE!
[None] (MMBtu)	1.00	1.00	1.00	1.00	1.00	#VALUE!	#VALUE!	#VALUE!

EnPl Tool Step 3 – Data Review Graph

EnPI Tool Step 4 – Y1 Regression (Electricity Usage Model Check)

EnPI Tool v3.02, © 2011 Georgia Tech Research Corporation

		Model Year Model Year	r First Row r Last Row	01/05/09 12/12/09			Model OK		Yes Production No CDD Yes Average Temp No Dry Tons
_		Y1	X1	X2	X3	X4			No HDD
	Date	Electricity (MMBtu)	Production	Average Temp			Model	Electricity (MMBtu) / Model	Evaluate Model Show All Rows
1	1/5/2009	58,200	53,942	42			58,396	1.00	
2	2/5/2009	57,986	56,181	48			58,395	0.99	
3	3/8/2009	58,410	59,127	58			58,196	1.00	
4	4/8/2009	59,292	62,775	62			58,739	1.01	
5	5/9/2009	58,220	63,931	71			58,182	1.00	
6	6/9/2009	56,788	64,381	76			57,824	0.98	
7	7/10/2009	56,131	64,406	79			57,548	0.98	
8	8/10/2009	58,466	60,847	80			56,556	1.03	
9	9/10/2009	56,727	58,975	72			56,838	1.00	
10	10/11/2009	58,619	61,228	64			58,160	1.01	
11	11/11/2009	55,651	50,214	58			55,948	0.99	
12	12/12/2009	61,365	64,550	42			61,071	1.00	
			X1	X2	X3	X4			
		Electricity (MMBtu)	Production	Average Temp					
		r-values	0.00466	0.00207					

P-Values	0.00466	0.00267		
F-Test	0.00419			
r^2	0.70			
m	0.25	-94.24	0.00	0.00
b	48751			

Regression Model

y = (0.252)*X1+ (-94.24)*X2+ (0)*X3+ (0)*X4+ 48751									
Round coefficients (m)	3								
Round constant (b)	0								

EnPI Tool Step 4 – Y2 Regression (Natural Gas Usage Model Check)

		Model Year	First Row	01/05/09					Variables to be Included
		Model Year	Last Row	12/12/09			Model OK		No Production Yes CDD
		V2	¥1	¥2	V2	V4			No Average Temp Yes Dry Tons
П		12		~~~	ΛJ	Λ4		Natural Cas	
		Natural Gas						(MMRtu) /	Evaluate Model Show All Roy
	Date	(MMBtu)	CDD	Drv Tons			Model	Model	
1	1/5/2009	105,794	-	31.275			102.096	1.04	
2	2/5/2009	106,205	-	33,691			108,109	0.98	
3	3/8/2009	100,289	11	29,614			98,323	1.02	
4	4/8/2009	126,083	353	35,683			124,641	1.01	
5	5/9/2009	116,794	194	35,378			118,669	0.98	
6	6/9/2009	119,049	330	36,209			125,196	0.95	
7	7/10/2009	131,075	425	35,491			126,524	1.04	
8	8/10/2009	118,758	451	31,724			118,001	1.01	
9	9/10/2009	120,152	238	35,441			120,268	1.00	
10	10/11/2009	102,096	42	33,924			110,066	0.93	
11	11/11/2009	85,831	29	25,070			87,604	0.98	
12	12/12/2009	119,797	-	35,425			112,425	1.07	J
			X1	X2	X3	X4			
		Natural Gas							
		(MMBtu)	CDD	Dry Tons					
		P-Values	0.00497	0.00060					
		F-Test	0.00006						
		r^2	0.88						
		m	32.79	2.49	0.00	0.00			
		b	24260						
		Regression M	lodel						
			y = (32.789)*	X1+ (2.489)*X	2+ (0)*X3+ (0	*X4+ 24260			
		Round coeffi	cients (m)	3					
		Round const	ant (b)	0					

RESEARCH INSTITUTE

EnPl Step 5 – Performance Improvement: (Forecast Example)

					Leve												
Pathway	Requiren	nents		Silver	Gold		Platinum		amnl	a l Isa	no Mo	dolsi					
								<i>רי</i> ך	ampi	e 03a	je mo	uers.					
Energy	Minimum	% improven	nent	5%	10)%	15%	Ele	ectrici	tv = (0, 0)	25)(To	ons Pro	oducti	on)-(9	4.29)(Ava. Te	+(ame
Performance	Maximum	years to ac	hieve*	3	3	3	3			-) (-	/(
								NC	G=(33	.39)(Cl	DD)+(2	2.49)(E	Dry To	ns)+24	4260		
lature	Minimum	% Improven	nent	15%	15	5%	15%										
nerav	Maximum	vears to ac	hieve*	10	1	0	10										
	Minimum	Best Practic	e	35	6	1	81										
	Scorecar	d points															
		EnPl Tool v3.0	2, 🕈 2011 G	eorgia Tech	Research Co	orporatio	n C-		dalad Davi	ad fas Fash							
		Y1	Model OK					tility	Electricity	Gas	[None]	ame					
		Y2 Model OK						rst Row	01/05/09	01/05/09	01/00/00						
		Y3 Model Error							12/12/09	12/12/09	01/00/00						
		Forecast Data Valid Select Modeling Method Forecast															
						Last Y	ear of Evaluate	ed Period.	First Row	01/10/11							
						1 4 14	In any off Freelessed	and Densie d	Last Dave	40/00/44							
						Last Y	ear of Evaluate	ed Period	, Last Row	12/26/11							
						Last Y Perfo	ear of Evaluate	ed Period proveme	, Last Row nt (+) or [12/26/11	1.9%	<u> </u>					
				¥9	Electricity	Last Y Perfo y	vear of Evaluate	ed Period proveme	, Last Row nt (+) or E)ecline (-)	1.9%		Natura	al Gas			
		¥1	X1 0.25	X2 -94.24	Electricity X3	Last Y Perfo <u>y</u> X4 0.00	Year of Evaluate	ed Period proveme	, Last Row	0ecline (-)	1.9% X1 32,79	X2 2.49	Natura X3 0.00	al Gas X4	B 24260	Natural	
	Date	Y1 Electricity (kWb)	X1 0.25 Productio	X2 -94.24 Average Temp	Electricity X3 0.00	Last Y Perfo <u>y</u> X4 0.00	Vear of Evaluate	ed Period proveme lectricity	nt (+) or E	Decline (-) Y2 Natural Gas (MCE)	1.9% X1 32.79 CDD	X2 2.49 Dry Tons	Natura X3 0.00	al Gas X4 0.00	B 24260	Natural Gas	Model
1	Date 01/05/09	Y1 Electricity (kWh) 5,685,825	X1 0.25 Productio n 53,942	X2 -94.24 Average Temp 42	Electricity X3 0.00	Last Y Perfo y X4 0.00	Vear of Evaluate prmance Imp <u>B</u> 48751 Eli (1)	ed Period proveme lectricity <u>MMBtu)</u> 58,200	, Last Row nt (+) or [<u>Model</u> 58,396	12/26/11 Decline (-) Y2 Natural Gas (MCF) 102,713	1.9% X1 32.79 CDD	X2 2.49 Dry Tons 31,275	Natura X3 0.00	al Gas X4 0.00	B 24260	Natural Gas (MMBtu) 105,794	<u>Model</u> 102,096
1 2	Date 01/05/09 02/05/09	Y1 Electricity (kWh) 5,685,825 5,664,904	X1 0.25 Productio n 53,942 56,181	X2 -94.24 Average Temp 42 48	Electricity X3 0.00	Last Y Perfo <u>y</u> <u>X4</u> 0.00	/ear of Evaluate prmance Imp <u>B</u> 48751 Eli (1	ed Period proveme lectricity <u>MMBtu)</u> 58,200 57,986	Model 58,396 58,395	Y2 Natural Gas (MCF) 102,713 103,112	1.9% X1 32.79 CDD	X2 2.49 Dry Tons 31,275 33,691	Natura X3 0.00 -	al Gas X4 0.00	B 24260	Natural Gas (MMBtu) 105,794 106,205	<u>Model</u> 102,096 108,109
1 2 3	Date 01/05/09 02/05/09 03/08/09	Y1 Electricity (kWh) 5,665,625 5,664,904 5,706,338	X1 0.25 Productio n 53,942 56,181 59,127	X2 -94.24 Average Temp 42 48 58 58	Electricity X3 0.00	Last Y Perfo <u>y</u> <u>X4</u> 0.00 - - -	/ear of Evaluate ormance Imp <u>B</u> 48751 Eli (I	ed Period proveme lectricity <u>MMBtu)</u> 58,200 57,986 58,410	Model 58,396 58,395 58,196	Y2 Natural Gas (MCF) 102,713 103,112 97,368 97,368	1.9% X1 32.79 CDD	X2 2.49 Dry Tons 31,275 33,691 29,614	Natura X3 0.00 - - -	al Gas X4 0.00	B 24260	Natural Gas (MMBtu) 105,794 106,205 100,289	Model 102,096 108,109 98,323
1 2 3 4 5	Date 01/05/09 02/05/09 03/08/09 05/09/09	Y1 Electricity (kWh) 5,668,825 5,664,904 5,706,338 5,792,469 5,687,716	X1 0.25 Productio n 53,942 56,181 59,127 62,775 63,931	X2 -94.24 Average Temp 42 48 58 62 71	Electricity X3 0.00 - - - - -	Last Y Perfo X4 0.00	/ear of Evaluate ormance Imp <u>B</u> 48751 El (1	ed Period proveme lectricity <u>MMBtu)</u> 58,200 57,986 58,410 59,292 58,220	Model 58,396 58,395 58,196 58,739 58,739	V12/26/11 Decline (-) V2 Natural Gas (MCF) 102,713 103,112 97,368 122,411 113,302	1.9% X1 32.79 CDD - - 11 353 194	X2 2.49 Dry Tons 31,275 33,691 29,614 35,683 25,378	Natura X3 0.00 - - - -	al Gas X4 0.00	B 24260	Natural Gas (MMBtu) 105,794 106,205 100,289 126,083 116,794	Model 102,096 108,109 98,323 124,641 124,649
1 2 3 4 5 6	Date 01/05/09 02/05/09 03/08/09 04/08/09 05/09/09 06/09/09	Y1 Electricity (kWh) 5,685,825 5,664,904 5,706,338 5,792,469 5,687,716 5,547,835	X1 0.25 Productio n 53,942 56,181 59,127 62,775 63,931 64,381	X2 -94.24 Average Temp 42 48 58 62 71 76	Electricity X3 0.00 - - - - - -	Last Y Perfo y X4 0.00 - - - - -	/ear of Evaluate ormance Imp <u>B</u> 48751 El (1	ed Period proveme: (ectricity (MMBtu) 58,200 57,986 58,410 59,292 58,220 56,788	Model 58,396 58,395 58,196 58,739 58,182 57,824	12/26/11 12/26/11 Decline (-) Y2 Natural Gas (MCF) 102,713 103,112 97,368 122,411 113,392 115,562	1.9% X1 32.79 CDD - - 11 353 194 330	X2 2.49 Dry Tons 31,275 33,691 29,614 35,683 35,378 36,209	Natura X3 0.00 - - - - -	al Gas X4 0.00	B 24260	Natural Gas (MMBtu) 105,794 106,205 100,289 126,083 116,794 119,049	Model 102,096 108,109 98,323 124,641 118,669 125,196
1 2 3 4 5 6 7	Date 01/05/09 02/05/09 03/08/09 04/08/09 05/09/09 06/09/09 07/10/09	Y1 Electricity (kWh) 5,685,825 5,664,904 5,706,338 5,792,469 5,687,716 5,547,835 5,483,640	X1 0.25 Productio n 53,942 56,181 59,127 62,775 63,931 64,381 64,406	X2 -94.24 Average Temp 42 48 58 62 71 76 79	Electricity X3 0.00 - - - - - - -	Last Y Perfo y X4 0.00 - - - - - - - - - -	/ear of Evaluate ormance Imp 48751 El (1	ed Period proveme: (MMBtu) 58,200 57,986 58,410 59,292 58,220 56,788 56,781	Model 58,396 58,196 58,196 58,182 57,824 57,548	Y2 Natural Gas (MCF) 102,713 103,112 97,368 122,411 113,392 115,582 127,258	1.9% X1 32.79 CDD - - 11 353 194 330 425	X2 2.49 Dry Tons 31,275 33,691 29,614 35,683 35,378 36,209 35,491	Natura X3 0.00 - - - - - - -	al Gas X4 0.00 - - - - - - -	B 24260	Natural Gas (MMBtu) 105,794 106,205 100,289 126,083 116,794 119,049 131,075	Model 102,096 108,109 98,323 124,641 118,699 125,196 126,524
1 2 3 4 5 6 7 8	Date 01/05/09 03/08/09 04/08/09 05/09/09 07/10/09 08/10/09	Y1 Electricity (kWh) 5,685,825 5,664,904 5,706,338 5,792,469 5,687,716 5,547,835 5,483,640 5,711,789	X1 0.25 Productio n 53,942 56,181 59,127 62,775 63,931 64,381 64,381 64,406 60,847	X2 -94.24 Average Temp 42 48 58 62 71 76 79 80	Electricity X3 0.00 - - - - - - - - - - - -	Last Y Perfo <u>y</u> <u>X4</u> 0.00 - - - - - - - - - - - - - - - - -	/ear of Evaluate ormance Imp <u>B</u> 48751 Ek (1	ed Period proveme (ectricity MMBtu) 58,200 57,986 58,410 59,292 58,220 56,783 56,783 56,783 56,454	Model 58,396 58,199 58,199 58,199 58,182 57,548 56,556	Y2 Natural Gas (MCF) 102,713 103,112 97,368 122,411 113,392 115,582 127,258 115,299	1.9% X1 32.79 CDD - - 11 353 194 330 425 451	x2 2.49 Dry Tons 31,275 33,691 29,614 35,683 35,378 36,209 35,491 31,724	Natura X3 0.00 - - - - - - - - - - - - - -	al Gas X4 0.00 - - - - - - - - - - - - - - - - -	B 24260	Natural Gas (MMBtu) 105,794 106,205 100,289 126,083 116,794 119,049 131,075 118,758	Model 102,096 108,109 98,323 124,641 118,669 125,196 126,524 118,001
1 2 3 4 5 6 7 8 9	Date 01/05/09 02/05/09 03/08/09 05/09/09 05/09/09 06/09/09 06/09/09 08/10/09 09/10/09	Y1 Electricity (kWh) 5,685,825 5,664,904 5,706,338 5,792,489 5,687,716 5,547,835 5,687,716 5,547,835 5,483,640 5,711,789 5,541,890	X1 0.25 Productio n 53,942 56,181 59,127 62,775 63,931 64,381 64,406 60,847 58,975	X2 -94.24 Average Temp 42 48 58 62 71 76 79 80 72	Electricity x3 0.00 - - - - - - - - - - - - - - - - -	Last Y Perfo <u>y</u> <u>X4</u> 0.00 - - - - - - - - - - - - - - - - -	Vear of Evaluate ormance Imp <u>B</u> 48751 El (1)	ed Period provemen 58,200 57,986 58,410 59,292 58,220 56,788 56,131 58,466 56,727	Model 58,396 58,395 58,196 58,799 58,182 57,824 57,548 56,556 56,6338	Y2 Natural Gas (MCF) 102,713 103,112 97,368 122,411 113,392 115,582 127,258 115,299 116,652	1.9% X1 32.79 CDD - - - 11 353 194 330 425 451 238	x2 2.49 Dry Tons 31,275 33,691 29,614 35,683 35,378 36,209 35,491 31,724 35,441	Natura X3 0.00 - - - - - - - - - - - - - -	al Gas X4 0.00 - - - - - - - - - - - - - - - - -	B 24260	Natural Gas (MMBtu) 105,794 106,205 100,289 126,083 116,794 119,049 131,075 118,758 120,152	Model 102,096 108,109 98,323 124,641 118,669 125,196 126,524 118,001 120,268
1 2 3 4 5 6 7 8 9 10	Date 01/05/09 02/05/09 05/09/09 05/09/09 06/09/09 07/10/09 08/10/09 09/10/09 10/11/09	Y1 Electricity (kWh) 5,685,825 5,664,904 5,706,338 5,792,469 5,687,716 5,547,835 5,483,640 5,711,789 5,541,890 5,726,782	X1 0.25 Productio 53,942 56,181 59,127 62,775 63,931 64,381 64,406 60,847 58,975 61,228	X2 -94.24 Average Temp 42 48 58 62 71 76 79 80 72 64	Electricity X3 0.00	Last Y Perfc <u>y</u> <u>X4</u> - - - - - - - - - - - - - - - - - - -	Vear of Evaluate ormance Imp <u>B</u> 48751 El (1)	ed Period proveme: <u>MMBu</u>) 57,986 58,200 57,986 58,410 59,292 58,220 56,788 56,788 56,783 56,783 56,737 58,619	Model 58,396 58,395 58,195 58,195 58,195 58,739 58,182 57,824 57,548 56,556 56,556 56,556 56,838 58,160	Y2 Natural Gas (MCF) 102,713 103,112 97,368 122,411 113,392 115,582 127,258 115,299 116,652 99,122	1.9% X1 32.79 CDD - 11 353 194 330 425 451 238 42	X2 2.49 Dry Tons 31,275 33,691 29,614 35,683 35,378 36,209 35,491 31,724 35,441 33,924	Natura X3 0.00 - - - - - - - - - - - - - -	al Gas X4 0.00 - - - - - - - - - - - - - - - - -	B 24260	Natural Gas (MMBtu) 105,794 106,205 100,289 126,083 116,794 119,049 131,075 118,758 120,152 102,096	Model 102,096 108,109 98,323 124,641 118,645 125,196 126,524 118,001 120,268 110,066
1 2 3 4 5 6 7 8 9 10 11	Date 01/05/09 02/05/09 03/08/09 05/09/09 05/09/09 06/09/09 07/10/09 08/10/09 09/10/09 10/11/09 11/11/09	Y1 Electricity (kWh) 5,668,825 5,664,904 5,706,338 5,792,469 5,687,716 5,547,835 5,483,640 5,711,789 5,541,890 5,726,782 5,436,763	X1 0.25 Productio n 53,942 56,181 59,127 62,775 63,931 64,381 64,381 64,406 60,847 58,975 61,228 50,214	X2 -94.24 Average Temp 42 48 58 62 71 76 79 80 72 64 58 58 58 58 58 58 58 58 58 58	Electricity X3 0.00 - - - - - - - - - - - - - - - - -	Last Y Perfo y X4 0.00 - - - - - - - - - - - - - - - - -	/ear of Evaluate ormance Imp 48751 El (1	ed Period proveme: (MMBtu) 58,200 57,986 58,410 59,292 58,220 56,788 56,738 56,738 56,738 56,737 58,619 55,6561	Model 58,396 58,396 58,396 58,396 58,196 58,739 57,824 57,548 56,556 56,838 58,160 55,948	Y2 Natural Gas (MCF) 102,713 103,112 97,368 122,411 113,392 115,582 127,258 115,299 116,652 99,122 83,331	1.9% X1 32.79 CDD - 11 353 194 330 425 451 238 42 238 42 29	X2 2.49 Dry Tons 31,275 33,691 29,614 35,683 36,209 35,491 31,724 35,441 33,924 25,070	Natura X3 0.00 - - - - - - - - - - - - - - - - -	al Gas X4 0.00 - - - - - - - - - - - - - - - - -	B 24260	Natural Gas (MMBtu) 105,794 106,205 100,289 126,083 116,794 119,049 131,075 118,758 120,152 102,096 85,831	Model 102,096 108,109 98,323 124,641 118,669 125,196 126,524 118,001 120,268 110,066 87,604
1 2 3 4 5 6 7 8 9 10 11 12 13	Date 01/05/09 02/05/09 04/08/09 05/09/09 06/09/09 07/10/09 08/10/09 09/10/09 10/11/09 11/11/09 12/12/09	Y1 Electricity (kWh) 5,685,825 5,664,904 5,706,338 5,792,469 5,687,716 5,547,835 5,483,640 5,711,789 5,541,890 5,726,782 5,436,763 5,995,052 5,436,763 5,995,052	X1 0.25 Productio n 53,942 56,181 59,127 62,775 63,931 64,381 64,381 64,406 60,847 58,975 61,228 50,214 64,550	X2 -94.24 Average Temp 42 48 58 62 71 76 62 79 80 72 64 58 64 58 42 44	Electricity X3 0.00	Last Y Perfo y X4 0.00 - - - - - - - - - - - - - - - - -	/ear of Evaluate ormance Imp 48751 El (1	ed Period proveme: (minimized proveme) (minimized proveme) (minimi	Model 58,396 58,396 58,739 58,196 58,196 58,739 58,196 58,739 58,182 57,824 57,548 56,556 56,838 56,566 56,838 86,1071 59,948 61,071	Y2 Natural Gas (MCF) 102,713 103,112 97,368 122,411 113,392 115,582 127,258 115,299 116,652 99,122 83,331 116,658	1.9% X1 32.79 CDD - 11 353 194 330 425 451 238 42 29 -	X2 2.49 Dry Tons 31,275 33,691 29,614 35,683 36,209 35,491 31,724 35,441 33,924 25,070 35,425 29,324	Natura x3 0.00 - - - - - - - - - - - - - - - - -	al Gas X4 0.00 - - - - - - - - - - - - - - - - -	B 24260	Natural Gas (MMBtu) 105,794 106,205 100,289 126,083 116,794 119,049 131,075 118,758 120,152 102,096 85,831 119,797	Model 102,096 108,109 98,323 124,641 118,669 126,524 118,001 120,268 110,066 87,604 112,425

EPRI Power Quality and Energy Efficiency Presentation

EnPI Step 5 – Performance Improvement (Chaining Modeling Methods)

			Level	
Pathway	Requirements	Silver	Gold	Platinum
Energy	Minimum % improvement	5%	10%	15%
Performance	Maximum years to achieve*	3	3	3
Mature	Minimum % Improvement	15%	15%	15%
Energy	Maximum years to achieve*	10	10	10
	Minimum Best Practice Scorecard points	35	61	81

Example Usage Models:

Electricity = (5.09) (Tons Production)+20109

NG=(2.56)(Tons Production) + (211.52)(Avg Temp)+7323

		EnPl Tool #3 (12 🗢 2011 G	eorgia Tech	Besearch	Corporation	n											
		21111100110.0		corgia reor	incoculon.	Colporado	•	Confirm M	deled Peri	od for Each	Utility Are S	ame						
		Y1	Model OK					Utility	Electricity	Gas	[None]							
		Y2	Model OK					First Bow	01/01/08	01/01/08	01/00/00							
		Y3 I	V3 Model Error					Last Bow	12/01/08	12/01/08	01/00/00							
		Backe	ast Data V	alid														
		Forec	ast Data Va	alid			Se	ect Modeling Method Chaining										
		10100	ast buta vi	and				loot modelin	ig moulou	channig	1							
										Year Zero	Last Year							
									First Row	01/01/07	01/01/10							
									Last Row	12/01/07	12/01/10							
						Perfo	rmanco li	nnroveme	nt (+) or F	ocline ()	12.1%							
							initianee n	nproronio		001110 (7	121110							
				¥0	Electri	City				NO		¥0	Natura	alGas				
		¥1	X1	X2	X3	X4	В			Y2	X1	X2	X3	X4	В		ŀ	
		Electricity	5.09 Productio	0.00	0.00	0.00	20109	Electricity		Naturai	2.56 Productio	211.52 Average	0.00	0.00	7323	Natural	i I	
	Date	(kWh)	n					(MMBtu)	Model	(Therms)	n	Temp				(MMBtu)	Model	
1	01/01/07	15.281.844	24,993	-		-		156,425	147.223	855,491	24,993	55		-		85.549	82.940	
2	02/01/07	13,804,495	22,542	-	-	-		141,303	134,757	823,635	22,542	49	-	-		82,364	75,480	
3	03/01/07	15,084,654	24,714	-	-	-		154,407	145,804	832,492	24,714	62		-		83,249	83,727	
4	04/01/07	14,992,023	23,713	-	-	-		153,459	140,713	767,139	23,713	72		-		76,714	83,322	
5	05/01/07	14,710,694	22,903	-		-		150,579	136,593	766,639	22,903	78		-		76,664	82,454	
6	06/01/07	10,734,456	15,700	-	-	-		109,878	99,959	616,147	15,700	84	-	-		61,615	65,177	
7	07/01/07	15,553,184	24,314	-	-	-		159,203	143,769	838,948	24,314	88		-		83,895	88,118	
ŏ	08/01/07	15,128,236	24,350	-		-		154,853	143,953	815,650	24,350	90				81,565	88,654	
9	09/01/07	15,173,158	25,599	-	-	-		155,313	150,305	808,984	25,599	/8	-	-		80,898	89,271	
11	11/01/07	15,230,965	25,515	-	-			155,171	140,001	864,810	25,519	57	-	-		86 484	87 543	
12	12/01/07	14 504 240	23,046					148,466	137,320	799 355	23 046	50				79,936	76,898	
13	01/01/08	15,398,553	28,724	-	-	-		157,620	166,199	910,461	28,724	42				91,046	89,805	
14	02/01/08	14,046,280	23,799	-				143,778	141,150	794,058	23,799	49				79,406	78,677	
15	03/01/08	14,908,571	25,162	-	-	-		152,604	148,082	835,772	25,162	64	-	-		83,577	85,255	
16	04/01/08	8,635,463	16,838	-		-		88,393	105,747	590,247	16,838	62		-		59,025	63,606	
17	05/01/08	9,216,821	15,705	-	-	-		94,343	99,984	621,178	15,705	74	-	-		62,118	63,265	
18	06/01/08	11,912,004	18,179	-				121,931	112,567	767,032	18,179	81		-		76,703	71,080	
19	07/01/08	14,689,537	23,289	-	-	-		150,362	138,556	852,646	23,289	84	-	-		85,265	84,648	
20	08/01/08	12,765,098	25,115	-		-		130,664	147,843	072,066	25,115	88	1.1	1.1		07,207	90,190	
21	10/01/08	14 260 725	25,976					145.973	147,757	836 102	25,976	02 72				83,610	86,825	
23	11/01/08	14.876.345	21,929	-	-	-		152.274	131.639	794,756	21,929	61	-			79,476	76,428	
24	12/01/08	14,521,951	26.071	-		_		148,647	152,706	847,384	26.071	50				84,738	84,599	
25	01/01/09	14,807,836	26,170	-	-	-		151,573	153,209	890,364	26,170	47	-	-		89,036	84,239	
26	02/01/09	13 789 004	23,959					141.144	141.964	821 359	23 959	54				82,136	80.081	
N S	ten 3 - Data Review	(Granh)	Step 4 - Y1	Rearession	Sten	4 - Y2 Reare	ession	Step 4 - Y3	Rearession	Step 5	5 - EnPI 🦯	Notes 🖉 🖓 🗆						

FYI - Use of DOE ITP Tools

Software Tools Publications Training Databases Qualified Specialists Ways to Save Energy EERE Information Center

Opportunities

For Corporate Executive For Plant Management

For Technical

For General Public

free software tools to help you identify and analyze energy system savings opportunities in your plant or industrial facility. Learn more and download the tools to assess the energy situation at your plant and improve the efficiency of your motor-driven, process heating, and steam systems, as well as data centers. View the <u>interactive diagram</u> of plant energy flow and related ITP assessment software tools.

Software Tool Updates MotorMaster+ International Version 1.1.4 - August 2011 Programs and Offices

EVENTS

Pumping System Assessment
August 16, 2011

CAC Fundamentals of Compressed
Air (Level 1)
August 17, 2011

More Events
FEATURES

Manufacturing Energy and Carbon
Footprints

Search Help More Search Options

EERE Information Center

Search

How's Your ESP?

ITP also offers related training to help plant personnel increase their knowledge on energy management and take full advantage of opportunities identified in the software programs.

For assistance with software tools, contact the <u>EERE Information Center</u> or call 1-877-337-3463. Please see the <u>notice</u> before downloading any of these tools.

ITP tools include:

Plant-wide

- Industrial Facilities Scorecard
- Quick Plant Energy Profiler/Integrated Tool Suite (Quick PEP)

Motor-Driven

- <u>AirMaster+</u>
- Fan System Assessment Tool (FSAT)
- MotorMaster+
- MotorMaster+ International
- <u>Chilled Water System Analysis Tool</u> (CWSAT)
- <u>Pumping System Assessment Tool</u> (PSAT)

Printable Version

Steam

- Mechanical Insulation Assessment and Design Calculators
- <u>Steam System Tool Suite</u> (SSTS)

Process Heating

- <u>Combined Heat and Power (CHP) Application Tool</u>
- <u>NOx and Energy Assessment Tool</u> (NxEAT)
- Process Heating and Survey Assessment Tool (PHAST)

Data Centers

Data Center Profiler Software Tool Suite (DC Pro)

Self-Assessment Software Tools

ITP's suite of analysis software tools identify energy savings opportunities and supply in-depth system-specific instruction.

<u>First Step</u>

Quick PEP – diagnose overall energy use and identify savings opportunities

- provides an overview of amount of energy purchased and generated
- identifies major industrial systems that consume the most energy
- describes savings potential
- points out specific resources and tools to realize savings

Self-Assessment Software Tools – Next Steps

- AIRMaster+
- Chilled Water System Analysis Tool
- Combined Heat & Power Application Tool
- Fan System Assessment Tool
- MotorMaster+
- MotorMaster+ International
- Process Heating Assessment & Survey Tool
- Pumping System Assessment Tool
- Steam System Tool Suite
 - Steam System Scoping Tool
 - Steam System Assessment Tool
 - -3E Plus®

These tools allow you to self-asses each system, model recommendations, and calculate impacts and cost savings

Self Assessment Software Tools

- Motor Master + Assists in energy-efficient motor selection and management. (International)
- Pumping System Assessment Tool Assesses the efficiency of pumping system operations.
- Fan System Assessment Tool quantifies potential benefits of a more optimally configured fan system
- Chilled Water System
 Assessment Tool Assesses the
 efficiency of a chilled water
 system.

• Air Master+ Provides comprehensive information on assessing compressed air systems.

• ASDMaster Determines economic feasibility of an ASD application.

Self Assessment Software Tools

- Steam System Scoping Tool Profiles and grades large steam system operations/management.
- Steam System Assessment Tool Assesses potential benefits of specific steamsystem improvements.
- **3EPlus Insulation Assessment Tool** Calculates most economical thickness of insulation for a variety of operating conditions.

- Process Heating Assessment and Survey Tool Assesses energy use in furnaces/ performance improvements
- NOx and Energy Assessment Tool (NxEAT) analyzes NOx emissions and energy efficiency improvements
 - Plant Energy Profiler profiles plant energy supply along consumption streams and identifies energy savings opportunities

DOE ITP Tool Portfolio

Technical Resources

ITP's portfolio of technical information helps plant managers, engineers, and operators increase their knowledge on managing specific energy systems:

- Sourcebooks essential references for analyzing and implementing energy efficiency and productivity improvements
- *Tip Sheets & Fact Sheets* targeted, low-cost improvement recommendations
- *Market Assessments* big picture energy efficiency opportunities

Tip Sheets

ITP provides dozens of Tip Sheets that are quick and to the point. They provide engineers, technicians, equipment operators, and others technical advice:

- to eliminate voltage unbalance
- reduce compressed air leaks
- inspect and repair steam traps
- benchmark the fuel cost of steam generation
- handle a host of other practical issues.

Energy Tips – Steam

Consider Installing a Condensing Economizer

etermine your boller capacity, minimization efficiency, stack gas meanuption, and samual fuel condensing concounter, co system efficiency by up to solution of the second state of the sec

a condensing economizer, and potential annual fuel energy and cost savings.

Suggested Actions

- Determine and entry consequences of a condensing occompliant, maximg that system changes are evaluated and modifications are included in the design (e.g., mist eliminator, hest exchangers). Simple psybecks for condensing occommizer projects are often less than 2 years.

The key to a successful waste heat recovery project is optimizing the use of the recovered energy. By replacing a conventional feedwater economizer with a

recovered energy. By replacing a conventional leedwater economizer with a condensing economizer, companies can improve overall heat recovery and steam system efficiency by up to 10%. Boiler applications that can benefit from this additional heat recovery include district heating systems, willboard production facilities, greenhouses, food processing plants, breweries, pulp and paper mills, textile plants, and bogonitals.

Use this tip sheet, and its companion, Considerations When Selecting a Condensing Economizer, to learn about these efficiency improvements.

A conventional feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to the boiler feedwater. For annual gas-fired boilers, the lowest temperature to which flue gas can be cooled is about 250°F to prevent condensation and possible stack or stack liner corrosion. A condensing economizer improves the effectiveness of water heat recovery by cooling the flue gas below its dew point and reclaiming sensible heat from the flue gas and latent heat from flue gas water vapor (see Table 1).

Table 1. Condensing Economizers Improve Boiler Efficiency											
System	Combustion Efficiency %	Stack Gas Temperature 9F									
Boller	80 - 82	350 - 550									
with Feedwater (FW) Ecces mizer	84 - 86	250 - 300									
with FW and Condensing Economizer	92 - 95	100 - 130									

All hydrocarbon fuels release significant quantities of water vapor as a combustion

byproduct. The equation below shows the reactants and combustion products given the stoichiometic combustion in air of methane (CH4), the primary constituent of

natural gas. The oxidation of one molecule of methane produces two molecules of

water vapor; each pound (lb) of methane fuel combusted produces 2.25 lb of water vapor. $CH_4 + 2O_2 + 7.5N_2 => CO_2 + 2H_2O + 7.5N_2$

urces

U.S. Department of Energy-DOE's notware, the Status System Assessment Tool and Steam System Scoping Tool, can hely you evaluate and identify steam system improvements. In addition, refer to Improving Steam System Performance: A Sourcebook for Industry for more information on steam system efficiency opportunities.

Visit the BestPractices Web site at www.eere.energy.gowindustry/ bestpractices to access these and many other industrial efficiency resources and information on Since the higher heating value of methane is 23,861 Blu/lb, 41.9 lb of methane are required to provide 1 mullion Blu (MMBHu) of energy, resulting in 94.3 lb of high temperature water vapor. The lattent bat of vaporization of where under atmospheric pressure at 212°F is 970.3 Blu/lb. When 1 MMBHu of methane is combusted, 91,405 Btu of water vapor heat of condensation (94.3 lb x 970.3 Blu/lb) is released up the boiler stuck. This latent heat, representing approximately 9% of the initial fuel energy content, can be recovered by using a condensing economizer to preheat boiler maker.

US, Department of Energy Energy Efficiency and Renewable Energy Contractory Sconomized Part of the Automation Contractory Sconomized Part of the Automation

condensing economizer nears makeup water to 190°F, p requirements from 5,000 lb/hr to 1,000 lb/hr.

For additional information on condensing economizers, refer to Steam Tip Sheet No. 26A, Considerations when Selecting a Condensing Economizer. For additional information on industrial steam system efficiency, refer to Improving Steam System Performance—A Sourcebook for Industry and the Siteam Tip Sheet No.3, Use Feedwater Economizers for Waste Heat Recovery. These publications are available online at www.cere.energy.gov/industry/bestpractices

ELECTRIC POWER RESEARCH INSTITUTE

Appendia American Public Permer

اللا_جه م

ladustrial Technologies Program

Together...Shaping the Future of Electricity